BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 10452556)

  • 21. Substitution of amino acids Asp-85, Asp-212, and Arg-82 in bacteriorhodopsin affects the proton release phase of the pump and the pK of the Schiff base.
    Otto H; Marti T; Holz M; Mogi T; Stern LJ; Engel F; Khorana HG; Heyn MP
    Proc Natl Acad Sci U S A; 1990 Feb; 87(3):1018-22. PubMed ID: 2153966
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The proton release group of bacteriorhodopsin controls the rate of the final step of its photocycle at low pH.
    Balashov SP; Lu M; Imasheva ES; Govindjee R; Ebrey TG; Othersen B; Chen Y; Crouch RK; Menick DR
    Biochemistry; 1999 Feb; 38(7):2026-39. PubMed ID: 10026285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time-resolved titrations of the Schiff base and of the Asp85 residue in artificial bacteriorhodopsins.
    Druckmann S; Ottolenghi M; Rousso I; Friedman N; Sheves M
    Biochemistry; 1995 Sep; 34(37):12066-74. PubMed ID: 7547945
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of water in the extracellular half channel of bacteriorhodopsin.
    Ganea C; Gergely C; Ludmann K; Váró G
    Biophys J; 1997 Nov; 73(5):2718-25. PubMed ID: 9370465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective light-induced hydroxylamine reactions occur with C13 = C14 nonisomerizable bacteriorhodopsin pigments.
    Rousso I; Gat Y; Lewis A; Sheves M; Ottolenghi M
    Biophys J; 1998 Jul; 75(1):413-7. PubMed ID: 9649399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Glutamate-194 to cysteine mutation inhibits fast light-induced proton release in bacteriorhodopsin.
    Balashov SP; Imasheva ES; Ebrey TG; Chen N; Menick DR; Crouch RK
    Biochemistry; 1997 Jul; 36(29):8671-6. PubMed ID: 9289012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. X-ray absorption and molecular dynamics study of cation binding sites in the purple membrane.
    Sepulcre F; Cordomí A; Proietti MG; Perez JJ; García J; Querol E; Padrós E
    Proteins; 2007 May; 67(2):360-74. PubMed ID: 17266122
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mutation of arginine 134 to lysine alters the pK(a)s of key groups involved in proton pumping by bacteriorhodopsin.
    Misra S; Martin C; Kwon OH; Ebrey TG; Chen N; Crouch RK; Menick DR
    Photochem Photobiol; 1997 Dec; 66(6):774-83. PubMed ID: 9421964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photocycle in the M-form in bacteriorhodopsin mutants devoid of primary proton acceptor Asp-85.
    Lukashev EP; Kolodner P
    Membr Cell Biol; 2001; 14(6):715-25. PubMed ID: 11817568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deprotonation of the Schiff base of bacteriorhodopsin is obligate in light-induced proton pumping.
    Longstaff C; Rando RR
    Biochemistry; 1987 Sep; 26(19):6107-13. PubMed ID: 2825771
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Proton uptake and release are rate-limiting steps in the photocycle of the bacteriorhodopsin mutant E204Q.
    Misra S; Govindjee R; Ebrey TG; Chen N; Ma JX; Crouch RK
    Biochemistry; 1997 Apr; 36(16):4875-83. PubMed ID: 9125508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: implications for the chloride translocation mechanism.
    Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 Dec; 35(50):16048-54. PubMed ID: 8973174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of internal water molecules with the schiff base in the L intermediate of the bacteriorhodopsin photocycle.
    Maeda A; Balashov SP; Lugtenburg J; Verhoeven MA; Herzfeld J; Belenky M; Gennis RB; Tomson FL; Ebrey TG
    Biochemistry; 2002 Mar; 41(11):3803-9. PubMed ID: 11888299
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The chromophore induces a correct folding of the polypeptide chain of bacteriorhodopsin.
    Kollbach G; Steinmüller S; Berndsen T; Buss V; Gärtner W
    Biochemistry; 1998 Jun; 37(22):8227-32. PubMed ID: 9609719
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Asp76 is the Schiff base counterion and proton acceptor in the proton-translocating form of sensory rhodopsin I.
    Rath P; Spudich E; Neal DD; Spudich JL; Rothschild KJ
    Biochemistry; 1996 May; 35(21):6690-6. PubMed ID: 8639619
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Proton transport by a bacteriorhodopsin mutant, aspartic acid-85-->asparagine, initiated in the unprotonated Schiff base state.
    Dickopf S; Alexiev U; Krebs MP; Otto H; Mollaaghababa R; Khorana HG; Heyn MP
    Proc Natl Acad Sci U S A; 1995 Dec; 92(25):11519-23. PubMed ID: 8524795
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction between Asp-85 and the proton-releasing group in bacteriorhodopsin. A study of an O-like photocycle intermediate.
    Gat Y; Friedman N; Sheves M; Ottolenghi M
    Biochemistry; 1997 Apr; 36(14):4135-48. PubMed ID: 9100007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupling between the retinal thermal isomerization and the Glu194 residue of bacteriorhodopsin.
    Lazarova T; Querol E; Padrós E
    Photochem Photobiol; 2009; 85(2):617-23. PubMed ID: 19267876
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.