These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10453928)

  • 1. Recovery of the torque-velocity relationship after short exhausting cycling exercise.
    Buttelli O; Vandewalle H; Jouanin JC
    Eur J Appl Physiol Occup Physiol; 1999 Aug; 80(3):249-51. PubMed ID: 10453928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of aerobic exercise on the torque-velocity relationship in cycling.
    Buttelli O; Vandewalle H; Jouanin JC; Seck D; Monod H
    Eur J Appl Physiol Occup Physiol; 1997; 75(6):499-503. PubMed ID: 9202945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of fatigue on maximal velocity and maximal torque during short exhausting cycling.
    Buttelli O; Seck D; Vandewalle H; Jouanin JC; Monod H
    Eur J Appl Physiol Occup Physiol; 1996; 73(1-2):175-9. PubMed ID: 8861688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Power and peak blood lactate at 5050 m with 10 and 30 s 'all out' cycling.
    Grassi B; Mognoni P; Marzorati M; Mattiotti S; Marconi C; Cerretelli P
    Acta Physiol Scand; 2001 Jul; 172(3):189-94. PubMed ID: 11472305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of previous dynamic arm exercise on power output during repeated maximal sprint cycling.
    Bogdanis GC; Nevill ME; Lakomy HK
    J Sports Sci; 1994 Aug; 12(4):363-70. PubMed ID: 7932946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle deoxygenation and neural drive to the muscle during repeated sprint cycling.
    Racinais S; Bishop D; Denis R; Lattier G; Mendez-Villaneuva A; Perrey S
    Med Sci Sports Exerc; 2007 Feb; 39(2):268-74. PubMed ID: 17277590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuro-muscular fatigue and recovery dynamics following anaerobic interval workload.
    Skof B; Strojnik V
    Int J Sports Med; 2006 Mar; 27(3):220-5. PubMed ID: 16541378
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic Work Capacity derived from isokinetic and isoinertial cycling.
    Wiedemann MS; Bosquet L
    Int J Sports Med; 2010 Feb; 31(2):89-94. PubMed ID: 20222000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of the time of day on repeated all-out cycle performance and short-term recovery patterns.
    Giacomoni M; Billaut F; Falgairette G
    Int J Sports Med; 2006 Jun; 27(6):468-74. PubMed ID: 16586326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans.
    Thomas C; Perrey S; Lambert K; Hugon G; Mornet D; Mercier J
    J Appl Physiol (1985); 2005 Mar; 98(3):804-9. PubMed ID: 15531559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. No acute effects of short-term creatine supplementation on muscle properties and sprint performance.
    Deutekom M; Beltman JG; de Ruiter CJ; de Koning JJ; de Haan A
    Eur J Appl Physiol; 2000 Jun; 82(3):223-9. PubMed ID: 10929216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Power output and muscle metabolism during and following recovery from 10 and 20 s of maximal sprint exercise in humans.
    Bogdanis GC; Nevill ME; Lakomy HK; Boobis LH
    Acta Physiol Scand; 1998 Jul; 163(3):261-72. PubMed ID: 9715738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for assessing muscle fatigue during sprint exercise in humans using a friction-loaded cycle ergometer.
    Hautier CA; Belli A; Lacour JR
    Eur J Appl Physiol Occup Physiol; 1998 Aug; 78(3):231-5. PubMed ID: 9721001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of recovery duration on the force-velocity relationship.
    Blonc S; Casas H; Duché P; Beaune B; Bedu M
    Int J Sports Med; 1998 May; 19(4):272-6. PubMed ID: 9657368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between plasma potassium concentration and muscle torque during recovery following intense exercise.
    McEniery CM; Jenkins DG; Barnett C
    Eur J Appl Physiol Occup Physiol; 1997; 75(5):462-6. PubMed ID: 9189736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of exhausting stretch-shortening cycle exercise on the time course of mechanical behaviour in the drop jump: possible role of muscle damage.
    Horita T; Komi PV; Nicol C; Kyröläinen H
    Eur J Appl Physiol Occup Physiol; 1999 Jan; 79(2):160-7. PubMed ID: 10029337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Torque-velocity relationship during cycle ergometer sprints with and without toe clips.
    Capmal S; Vandewalle H
    Eur J Appl Physiol Occup Physiol; 1997; 76(4):375-9. PubMed ID: 9349655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical fitness and performance. Fatigue responses during repeated sprints matched for initial mechanical output.
    Mendez-Villanueva A; Hamer P; Bishop D
    Med Sci Sports Exerc; 2007 Dec; 39(12):2219-25. PubMed ID: 18046194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exhausting stretch-shortening cycle (SSC) exercise causes greater impairment in SSC performance than in pure concentric performance.
    Horita T; Komi PV; Hämäläinen I; Avela J
    Eur J Appl Physiol; 2003 Feb; 88(6):527-34. PubMed ID: 12560951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Velocity-specific fatigue: quantifying fatigue during variable velocity cycling.
    Gardner AS; Martin DT; Jenkins DG; Dyer I; Van Eiden J; Barras M; Martin JC
    Med Sci Sports Exerc; 2009 Apr; 41(4):904-11. PubMed ID: 19276842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.