BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10453998)

  • 1. Modulatory effect of divalent metal cations on the phosphotyrosine activity of the frog liver acid phosphatase.
    Szalewicz A; Strzelczyk B; Kubicz A
    Acta Biochim Pol; 1999; 46(1):217-21. PubMed ID: 10453998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 35 kDa acid metallophosphatase of the frog Rana esculenta liver: studies on its cellular localization and protein phosphatase activity.
    Szalewicz A; Strzelczyk B; Sopel M; Kubicz A
    Acta Biochim Pol; 2003; 50(2):555-66. PubMed ID: 12833181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phosphotyrosine phosphatase activity in human placenta.
    Sako F; Taniguchi N; Makita A
    Jpn J Exp Med; 1985 Feb; 55(1):21-7. PubMed ID: 2993712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acid ATPase from chicken liver lysosomes. II. Presence of metal ion-activated enzyme.
    Nakabayashi T; Uchida S; Ikezawa H
    Biochem Int; 1985 Dec; 11(6):781-8. PubMed ID: 2936347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acid phosphatase from liver of the frog Rana esculenta, separation and partial characterization of multiple forms.
    Kubicz A; Dratewka E; Malicka-Błaszkiewicz M
    Acta Biochim Pol; 1978; 25(4):349-59. PubMed ID: 35912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphotyrosine as a substrate of acid and alkaline phosphatases.
    Apostoł I; Kuciel R; Wasylewska E; Ostrowski WS
    Acta Biochim Pol; 1985; 32(3):187-97. PubMed ID: 2418612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphotyrosine phosphatase: a novel phosphatase specific for phosphotyrosine, 2'-AMP and p-nitrophenylphosphate in rat brain.
    Motoyama N; Takimoto K; Okada M; Nakagawa H
    J Biochem; 1987 Apr; 101(4):939-47. PubMed ID: 2440857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial purification and some properties of a liver alkaline ribonuclease from the frog Rana esculenta.
    Malicka-Błaszkiewicz M; Kubicz A
    Acta Biochim Pol; 1979; 26(3):275-83. PubMed ID: 40372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The high molecular weight and the low molecular weight acid phosphatases of the frog liver and their phosphotyrosine activity.
    Jańska H; Kubicz A; Szalewicz A; Haraźna J
    Comp Biochem Physiol B; 1988; 90(1):173-8. PubMed ID: 2456178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pseudomonas aeruginosa acid phosphatase. Activation by divalent cations and inhibition by aluminium ion.
    Domenech CE; Lisa TA; Salvano MA; Garrido MN
    FEBS Lett; 1992 Mar; 299(1):96-8. PubMed ID: 1544481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic analysis of the effects of monovalent cations and divalent metals on the activity of Mycobacterium tuberculosis alpha-isopropylmalate synthase.
    de Carvalho LP; Blanchard JS
    Arch Biochem Biophys; 2006 Jul; 451(2):141-8. PubMed ID: 16684501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of protein tyrosine phosphatase activity in rat liver microsomes: suppressive effect of endogenous regucalcin in transgenic rats.
    Fukaya Y; Yamaguchi M
    Int J Mol Med; 2004 Sep; 14(3):427-32. PubMed ID: 15289895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and characterization of a phosphotyrosyl-protein phosphatase from wheat seedlings.
    Cheng HF; Tao M
    Biochim Biophys Acta; 1989 Oct; 998(3):271-6. PubMed ID: 2478196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An acid phosphatase from Manihot glaziovii as an alternative to alkaline Phosphatase for molecular cloning experiments.
    Tham SC; Lim SH; Yeoh HH
    Biotechnol Lett; 2005 Dec; 27(23-24):1865-8. PubMed ID: 16328981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+, and Zn2+) and water coordination on the structure of glycine and zwitterionic glycine.
    Remko M; Rode BM
    J Phys Chem A; 2006 Feb; 110(5):1960-7. PubMed ID: 16451030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EPR spectroscopic analysis of U7 hammerhead ribozyme dynamics during metal ion induced folding.
    Edwards TE; Sigurdsson ST
    Biochemistry; 2005 Sep; 44(38):12870-8. PubMed ID: 16171402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of divalent metal ions on annexin-mediated aggregation of asolectin liposomes.
    Mel'gunov VI; Akimova EI; Krasavchenko KS
    Acta Biochim Pol; 2000; 47(3):675-83. PubMed ID: 11310969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic characterization of O-phospho-L-tyrosine phosphohydrolase activity of two fungal phytases.
    Ullah AH; Sethumadhavan K; Mullaney EJ
    J Agric Food Chem; 2008 Aug; 56(16):7467-71. PubMed ID: 18627164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex formation of divalent metal ions with uridine 5'-O-thiomonophosphate or methyl thiophosphate: comparison of complex stabilities with those of the parent phosphate ligands.
    Da Costa CP; Okruszek A; Sigel H
    Chembiochem; 2003 Jul; 4(7):593-602. PubMed ID: 12851928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic and thermodynamic characterization of the RNA-cleaving 8-17 deoxyribozyme.
    Bonaccio M; Credali A; Peracchi A
    Nucleic Acids Res; 2004; 32(3):916-25. PubMed ID: 14963261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.