These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10454277)

  • 21. Dissociating EEG sources linked to stimulus and response evaluation in numerical Stroop task using Independent Component Analysis.
    Beldzik E; Domagalik A; Froncisz W; Marek T
    Clin Neurophysiol; 2015 May; 126(5):914-26. PubMed ID: 25240246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The dissociation of neural circuits in a Stroop task.
    Xiao X; Qiu J; Zhang Q
    Neuroreport; 2009 May; 20(7):674-8. PubMed ID: 19349920
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The strength of anticipatory spatial biasing predicts target discrimination at attended locations: a high-density EEG study.
    Kelly SP; Gomez-Ramirez M; Foxe JJ
    Eur J Neurosci; 2009 Dec; 30(11):2224-34. PubMed ID: 19930401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conflict adaptation and cognitive control adjustments following traumatic brain injury.
    Larson MJ; Kaufman DA; Perlstein WM
    J Int Neuropsychol Soc; 2009 Nov; 15(6):927-37. PubMed ID: 19765356
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Are incongruent objects harder to identify? The functional significance of the N300 component.
    Truman A; Mudrik L
    Neuropsychologia; 2018 Aug; 117():222-232. PubMed ID: 29885960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nicotine Stroop and addiction memory--an ERP study.
    Fehr T; Wiedenmann P; Herrmann M
    Int J Psychophysiol; 2006 Nov; 62(2):224-32. PubMed ID: 16492391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Flanker task with equiprobable congruent and incongruent conditions does not elicit the conflict N2.
    Kałamała P; Szewczyk J; Senderecka M; Wodniecka Z
    Psychophysiology; 2018 Feb; 55(2):. PubMed ID: 28845513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Neurophysiological mechanisms of complex arithmetic task solving.
    Aydarkin EK; Fomina AS
    J Integr Neurosci; 2013 Mar; 12(1):73-89. PubMed ID: 23621458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Functional interactions within the newborn brain investigated by adaptive coherence analysis of EEG.
    Eiselt M; Schindler J; Arnold M; Witte H; Zwiener U; Frenzel J
    Neurophysiol Clin; 2001 Apr; 31(2):104-13. PubMed ID: 11433672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrophysiological correlates of block-wise strategic adaptations to consciously and unconsciously triggered conflict.
    Jiang J; van Gaal S; Bailey K; Chen A; Zhang Q
    Neuropsychologia; 2013 Nov; 51(13):2791-8. PubMed ID: 24055539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cortical activation, signal-to-noise ratio and stochastic resonance during information processing in man.
    Winterer G; Ziller M; Dorn H; Frick K; Mulert C; Dahhan N; Herrmann WM; Coppola R
    Clin Neurophysiol; 1999 Jul; 110(7):1193-203. PubMed ID: 10423185
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Gender-related differences in EEG coherence in Stroop task].
    Bryzgalov AO; Vol'f NV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2006; 56(4):464-71. PubMed ID: 17025190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. ERP correlates of the conflict level in the multi-response Stroop task.
    Chuderski A; Senderecka M; Kałamała P; Kroczek B; Ociepka M
    Brain Res; 2016 Nov; 1650():93-102. PubMed ID: 27586410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pleasant mood intensifies brain processing of cognitive control: ERP correlates.
    Yuan J; Xu S; Yang J; Liu Q; Chen A; Zhu L; Chen J; Li H
    Biol Psychol; 2011 Apr; 87(1):17-24. PubMed ID: 21315134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks.
    West R
    Neuropsychologia; 2003; 41(8):1122-35. PubMed ID: 12667546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Studies of selective attention in dogs using the coherence-phase characteristics of cortical potentials over a wide range of frequencies, 1-220 Hz.
    Dumenko VN; Kozlov MK
    Neurosci Behav Physiol; 2003 Jul; 33(6):543-54. PubMed ID: 14552547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. When three is greater than five: EEG and fMRI signatures of errors in numerical and physical comparisons.
    Beldzik E; Domagalik A; Gawlowska M; Marek T; Mojsa-Kaja J
    Brain Struct Funct; 2018 Mar; 223(2):805-818. PubMed ID: 28939991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. ERP Evidence for Implicit Priming of Top-Down Control of Attention.
    Blais C; Hubbard E; Mangun GR
    J Cogn Neurosci; 2016 May; 28(5):763-72. PubMed ID: 26765945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anticipatory cortico-cortical interactions: switching the task configuration between effectors.
    Serrien DJ; Pogosyan AH; Cassidy MJ; Brown P
    Exp Brain Res; 2004 Feb; 154(3):359-67. PubMed ID: 14618284
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self vs. other: neural correlates underlying agent identification based on unimodal auditory information as revealed by electrotomography (sLORETA).
    Justen C; Herbert C; Werner K; Raab M
    Neuroscience; 2014 Feb; 259():25-34. PubMed ID: 24295635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.