BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 10454722)

  • 1. Contractile properties of the quadriceps muscle in individuals with spinal cord injury.
    Gerrits HL; De Haan A; Hopman MT; van Der Woude LH; Jones DA; Sargeant AJ
    Muscle Nerve; 1999 Sep; 22(9):1249-56. PubMed ID: 10454722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reproducibility of contractile properties of the human paralysed and non-paralysed quadriceps muscle.
    Gerrits HL; Hopman MT; Sargeant AJ; de Haan A
    Clin Physiol; 2001 Jan; 21(1):105-13. PubMed ID: 11168304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contractile properties and the force-frequency relationship of the paralyzed human quadriceps femoris muscle.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Phys Ther; 2006 Jun; 86(6):788-99. PubMed ID: 16737404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered contractile properties of the quadriceps muscle in people with spinal cord injury following functional electrical stimulated cycle training.
    Gerrits HL; de Haan A; Sargeant AJ; Dallmeijer A; Hopman MT
    Spinal Cord; 2000 Apr; 38(4):214-23. PubMed ID: 10822391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface electrical stimulation of skeletal muscle after spinal cord injury.
    Hillegass EA; Dudley GA
    Spinal Cord; 1999 Apr; 37(4):251-7. PubMed ID: 10338344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of complete spinal cord injury on skeletal muscle mechanics within the first 6 months of injury.
    Castro MJ; Apple DF; Rogers S; Dudley GA
    Eur J Appl Physiol; 2000 Jan; 81(1-2):128-31. PubMed ID: 10552277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-frequency fatigue in individuals with spinal cord injury.
    Mahoney E; Puetz TW; Dudley GA; McCully KK
    J Spinal Cord Med; 2007; 30(5):458-66. PubMed ID: 18092561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contractile properties of human thenar muscles paralyzed by spinal cord injury.
    Thomas CK
    Muscle Nerve; 1997 Jul; 20(7):788-99. PubMed ID: 9179150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical and fatigue properties of wrist flexor muscles during repetitive contractions after cervical spinal cord injury.
    Cameron T; Calancie B
    Arch Phys Med Rehabil; 1995 Oct; 76(10):929-33. PubMed ID: 7487433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of muscle temperature on the contractile properties of the quadriceps muscle in humans with spinal cord injury.
    Gerrits HL; de Haan A; Hopman MT; van der Woude LH; Sargeant AJ
    Clin Sci (Lond); 2000 Jan; 98(1):31-8. PubMed ID: 10600656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanomyography-Based Wearable Monitor of Quasi-Isometric Muscle Fatigue for Motor Neural Prostheses.
    Krueger E; Popović-Maneski L; Nohama P
    Artif Organs; 2018 Feb; 42(2):208-218. PubMed ID: 28762503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Twitch and tetanic properties of human thenar motor units paralyzed by chronic spinal cord injury.
    Häger-Ross CK; Klein CS; Thomas CK
    J Neurophysiol; 2006 Jul; 96(1):165-74. PubMed ID: 16611836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of tendon vibration during wide-pulse neuromuscular electrical stimulation (NMES) on muscle force production in people with spinal cord injury (SCI).
    Bochkezanian V; Newton RU; Trajano GS; Vieira A; Pulverenti TS; Blazevich AJ
    BMC Neurol; 2018 Feb; 18(1):17. PubMed ID: 29433467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue of paralyzed and control thenar muscles induced by variable or constant frequency stimulation.
    Thomas CK; Griffin L; Godfrey S; Ribot-Ciscar E; Butler JE
    J Neurophysiol; 2003 Apr; 89(4):2055-64. PubMed ID: 12611940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Doublet stimulation protocol to minimize musculoskeletal stress during paralyzed quadriceps muscle testing.
    Dudley-Javoroski S; Littmann AE; Iguchi M; Shields RK
    J Appl Physiol (1985); 2008 Jun; 104(6):1574-82. PubMed ID: 18436697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased blood pressure can reduce fatigue of thenar muscles paralyzed after spinal cord injury.
    Butler JE; Ribot-Ciscar E; Zijdewind I; Thomas CK
    Muscle Nerve; 2004 Apr; 29(4):575-84. PubMed ID: 15052623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electrical stimulation pattern on the force responses of paralyzed human quadriceps muscles.
    Scott WB; Lee SC; Johnston TE; Binkley J; Binder-Macleod SA
    Muscle Nerve; 2007 Apr; 35(4):471-8. PubMed ID: 17212347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle Fatigue in Response to Electrical Stimulation Pattern and Frequency in Spinal Cord Injury.
    Qiu S; Draghici AE; Picard G; Taylor JA
    PM R; 2020 Jul; 12(7):699-705. PubMed ID: 31702873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced voluntary drive during sustained but not during brief maximal voluntary contractions in the first dorsal interosseous weakened by spinal cord injury.
    Prak RF; Doestzada M; Thomas CK; Tepper M; Zijdewind I
    J Appl Physiol (1985); 2015 Dec; 119(11):1320-9. PubMed ID: 26404618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spinal cord injury and contractile properties of the human tibialis anterior.
    Krieger SR; Pierotti DJ; Coast JR
    J Sports Sci Med; 2005 Jun; 4(2):0. PubMed ID: 24431980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.