These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10454913)

  • 1. Gaining new insight into the molecular basis of evolution.
    Pennisi E
    Science; 1999 Jul; 285(5428):654-5. PubMed ID: 10454913
    [No Abstract]   [Full Text] [Related]  

  • 2. To see or not to see: molecular evolution of the rhodopsin visual pigment in neotropical electric fishes.
    Van Nynatten A; Janzen FH; Brochu K; Maldonado-Ocampo JA; Crampton WGR; Chang BSW; Lovejoy NR
    Proc Biol Sci; 2019 Jul; 286(1906):20191182. PubMed ID: 31288710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recurrent convergent evolution at amino acid residue 261 in fish rhodopsin.
    Hill J; Enbody ED; Pettersson ME; Sprehn CG; Bekkevold D; Folkvord A; Laikre L; Kleinau G; Scheerer P; Andersson L
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18473-18478. PubMed ID: 31451650
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral Tuning of Killer Whale (Orcinus orca) Rhodopsin: Evidence for Positive Selection and Functional Adaptation in a Cetacean Visual Pigment.
    Dungan SZ; Kosyakov A; Chang BS
    Mol Biol Evol; 2016 Feb; 33(2):323-36. PubMed ID: 26486871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent positive selection in rhodopsin from lake and riverine cichlid fishes.
    Schott RK; Refvik SP; Hauser FE; López-Fernández H; Chang BS
    Mol Biol Evol; 2014 May; 31(5):1149-65. PubMed ID: 24509690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.
    Yokoyama S
    J Hered; 2000; 91(3):215-20. PubMed ID: 10833047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel amino acid replacements in the rhodopsins of the rockfishes (Sebastes spp.) associated with shifts in habitat depth.
    Sivasundar A; Palumbi SR
    J Evol Biol; 2010 Jun; 23(6):1159-69. PubMed ID: 20345807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Out of the blue: adaptive visual pigment evolution accompanies Amazon invasion.
    Van Nynatten A; Bloom D; Chang BS; Lovejoy NR
    Biol Lett; 2015 Jul; 11(7):. PubMed ID: 26224386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional role of positively selected amino acid substitutions in mammalian rhodopsin evolution.
    Fernández-Sampedro MA; Invergo BM; Ramon E; Bertranpetit J; Garriga P
    Sci Rep; 2016 Feb; 6():21570. PubMed ID: 26865329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and mechanisms of function of visual system proteins.
    Lipkin VM; Obukhov AN
    Membr Cell Biol; 2000; 13(2):165-93. PubMed ID: 10779170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Molecular basis for the evolution of teleost vision].
    Hisatomi O; Tokunaga F
    Tanpakushitsu Kakusan Koso; 2000 Dec; 45(17 Suppl):2924-30. PubMed ID: 11187798
    [No Abstract]   [Full Text] [Related]  

  • 12. The complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiiformes: Stomiidae).
    Kenaley CP; Devaney SC; Fjeran TT
    Evolution; 2014 Apr; 68(4):996-1013. PubMed ID: 24274363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for repeated loss of selective constraint in rhodopsin of amblyopsid cavefishes (Teleostei: Amblyopsidae).
    Niemiller ML; Fitzpatrick BM; Shah P; Schmitz L; Near TJ
    Evolution; 2013 Mar; 67(3):732-48. PubMed ID: 23461324
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convergent selection pressures drive the evolution of rhodopsin kinetics at high altitudes via nonparallel mechanisms.
    Castiglione GM; Schott RK; Hauser FE; Chang BSW
    Evolution; 2018 Jan; 72(1):170-186. PubMed ID: 29143302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive Evolution of Nearctic Deepwater Fish Vision: Implications for Assessing Functional Variation for Conservation.
    Van Nynatten A; Duncan AT; Lauzon R; Sheldon TA; Chen SK; Lovejoy NR; Mandrak NE; Chang BSW
    Mol Biol Evol; 2024 Feb; 41(2):. PubMed ID: 38314890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The molecular basis of adaptive evolution of squirrelfish rhodopsins.
    Yokoyama S; Takenaka N
    Mol Biol Evol; 2004 Nov; 21(11):2071-8. PubMed ID: 15269277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trade-offs in cavefish sensory capacity.
    Gunter H; Meyer A
    BMC Biol; 2013 Jan; 11():5. PubMed ID: 23347449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional trade-offs and environmental variation shaped ancient trajectories in the evolution of dim-light vision.
    Castiglione GM; Chang BS
    Elife; 2018 Oct; 7():. PubMed ID: 30362942
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ecological and Lineage-Specific Factors Drive the Molecular Evolution of Rhodopsin in Cichlid Fishes.
    Torres-Dowdall J; Henning F; Elmer KR; Meyer A
    Mol Biol Evol; 2015 Nov; 32(11):2876-82. PubMed ID: 26187436
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated Evolution and Functional Divergence of the Dim Light Visual Pigment Accompanies Cichlid Colonization of Central America.
    Hauser FE; Ilves KL; Schott RK; Castiglione GM; López-Fernández H; Chang BSW
    Mol Biol Evol; 2017 Oct; 34(10):2650-2664. PubMed ID: 28957507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.