BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 10455029)

  • 1. Processing and functional display of the 86 kDa heterodimeric penicillin G acylase on the surface of phage fd.
    Verhaert RM; Van Duin J; Quax WJ
    Biochem J; 1999 Sep; 342 ( Pt 2)(Pt 2):415-22. PubMed ID: 10455029
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of catalytic site mutations on active expression of phage fused penicillin acylase.
    Shi YF; Soumillion P; Ueda M
    J Biotechnol; 2010 Jan; 145(2):139-42. PubMed ID: 19932137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Size of the ligand complex between the N-terminal domain of the gene III coat protein and the non-infectious phage strongly influences the usefulness of in vitro selective infective phage technology.
    Cèbe R; Geiser M
    Biochem J; 2000 Dec; 352 Pt 3(Pt 3):841-9. PubMed ID: 11104694
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from Alcaligenes faecalis.
    Verhaert RM; Riemens AM; van der Laan JM; van Duin J; Quax WJ
    Appl Environ Microbiol; 1997 Sep; 63(9):3412-8. PubMed ID: 9292993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of penicillin G acylase from the Bro1 mutant strain of Providencia rettgeri.
    McDonough MA; Klei HE; Kelly JA
    Protein Sci; 1999 Oct; 8(10):1971-81. PubMed ID: 10548042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of a slow processing precursor penicillin acylase from Escherichia coli reveals the linker peptide blocking the active-site cleft.
    Hewitt L; Kasche V; Lummer K; Lewis RJ; Murshudov GN; Verma CS; Dodson GG; Wilson KS
    J Mol Biol; 2000 Sep; 302(4):887-98. PubMed ID: 10993730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure of the penicillin acylase gene from Escherichia coli: a periplasmic enzyme that undergoes multiple proteolytic processing.
    Bruns W; Hoppe J; Tsai H; Brüning HJ; Maywald F; Collins J; Mayer H
    J Mol Appl Genet; 1985; 3(1):36-44. PubMed ID: 2989404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a new active site for autocatalytic processing of penicillin acylase precursor in Escherichia coli ATCC11105.
    Lee H; Park OK; Kang HS
    Biochem Biophys Res Commun; 2000 May; 272(1):199-204. PubMed ID: 10872827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modifying filamentous phage capsid: limits in the size of the major capsid protein.
    Iannolo G; Minenkova O; Petruzzelli R; Cesareni G
    J Mol Biol; 1995 May; 248(4):835-44. PubMed ID: 7752244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of alphaArg145 and betaArg263 in the active site of penicillin acylase of Escherichia coli.
    Alkema WB; Prins AK; de Vries E; Janssen DB
    Biochem J; 2002 Jul; 365(Pt 1):303-9. PubMed ID: 12071857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Purification and characterization of Alcaligenes faecalis penicillin G acylase expressed in Bacillus subtilis.
    Zhou Z; Zhou LP; Chen MJ; Zhang YL; Li RB; Yang S; Yuan ZY
    Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai); 2003 May; 35(5):416-22. PubMed ID: 12766801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism.
    McVey CE; Walsh MA; Dodson GG; Wilson KS; Brannigan JA
    J Mol Biol; 2001 Oct; 313(1):139-50. PubMed ID: 11601852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression and purification of penicillin G acylase enzymes from four different micro-organisms, and a comparative evaluation of their synthesis/hydrolysis ratios for cephalexin.
    Cheng T; Chen M; Zheng H; Wang J; Yang S; Jiang W
    Protein Expr Purif; 2006 Mar; 46(1):107-13. PubMed ID: 16139515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of autoproteolytically subunit-assembled 7-beta-(4-carboxybutanamido)cephalosporanic acid (GL-7ACA) acylase from Pseudomonas sp. C427 using a chitin-binding domain.
    Nagao K; Yamashita M; Ueda M
    Appl Microbiol Biotechnol; 2004 Sep; 65(4):407-13. PubMed ID: 15221226
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification, substrate specificity, and N-terminal amino acid sequence analysis of a beta-lactamase-free penicillin amidase from Alcaligenes sp.
    Das S; Gayen JR; Pal A; Ghosh K; Rosazza JP; Samanta TB
    Appl Microbiol Biotechnol; 2004 Aug; 65(3):281-6. PubMed ID: 15257420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Constitutive expression and purification of Alcaligenes faecalis penicillin G acylase in Escherichia coli].
    Yang ZJ; Cai J; Sun J; Yuan ZY
    Sheng Wu Gong Cheng Xue Bao; 2004 Sep; 20(5):736-40. PubMed ID: 15974000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pro-sequence and Ca2+-binding: implications for folding and maturation of Ntn-hydrolase penicillin amidase from E. coli.
    Ignatova Z; Wischnewski F; Notbohm H; Kasche V
    J Mol Biol; 2005 May; 348(4):999-1014. PubMed ID: 15843029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of a fully functional, permuted single-chain penicillin G acylase.
    Flores G; Soberón X; Osuna J
    Protein Sci; 2004 Jun; 13(6):1677-83. PubMed ID: 15133167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular cloning and characterization of thermostable beta-lactam acylase with broad substrate specificity from Bacillus badius.
    Rajendhran J; Gunasekaran P
    J Biosci Bioeng; 2007 May; 103(5):457-63. PubMed ID: 17609162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution in vivo of penicillin G acylase activity from separately expressed subunits.
    Burtscher H; Schumacher G
    Eur J Biochem; 1992 Apr; 205(1):77-83. PubMed ID: 1555606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.