BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10455117)

  • 1. Adventures in membrane protein topology. A study of the membrane-bound state of colicin E1.
    Tory MC; Merrill AR
    J Biol Chem; 1999 Aug; 274(35):24539-49. PubMed ID: 10455117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the membrane topology of the closed state of the colicin E1 channel.
    Palmer LR; Merrill AR
    J Biol Chem; 1994 Feb; 269(6):4187-93. PubMed ID: 7508440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward elucidating the membrane topology of helix two of the colicin E1 channel domain.
    White D; Musse AA; Wang J; London E; Merrill AR
    J Biol Chem; 2006 Oct; 281(43):32375-84. PubMed ID: 16854987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The colicin E1 insertion-competent state: detection of structural changes using fluorescence resonance energy transfer.
    Steer BA; Merrill AR
    Biochemistry; 1994 Feb; 33(5):1108-15. PubMed ID: 8110742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide.
    Tory MC; Merrill AR
    Biochim Biophys Acta; 2002 Aug; 1564(2):435-48. PubMed ID: 12175927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state.
    Merrill AR; Palmer LR; Szabo AG
    Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for the amphipathic nature and tilted topology of helices 4 and 5 in the closed state of the colicin E1 channel.
    Ho D; Merrill AR
    Biochemistry; 2009 Feb; 48(6):1369-80. PubMed ID: 19159330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies.
    Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y
    J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein.
    Zakharov SD; Lindeberg M; Cramer WA
    Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane-bound state of the colicin E1 channel domain as an extended two-dimensional helical array.
    Zakharov SD; Lindeberg M; Griko Y; Salamon Z; Tollin G; Prendergast FG; Cramer WA
    Proc Natl Acad Sci U S A; 1998 Apr; 95(8):4282-7. PubMed ID: 9539728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning the membrane-bound conformation of helix 1 in the colicin E1 channel domain by site-directed fluorescence labeling.
    Musse AA; Wang J; Deleon GP; Prentice GA; London E; Merrill AR
    J Biol Chem; 2006 Jan; 281(2):885-95. PubMed ID: 16299381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of an unfolding intermediate and kinetic analysis of guanidine hydrochloride-induced denaturation of the colicin E1 channel peptide.
    Steer BA; Merrill AR
    Biochemistry; 1997 Mar; 36(10):3037-46. PubMed ID: 9062135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane topology of the colicin E1 channel using genetically encoded fluorescence.
    Ho D; Lugo MR; Lomize AL; Pogozheva ID; Singh SP; Schwan AL; Merrill AR
    Biochemistry; 2011 Jun; 50(22):4830-42. PubMed ID: 21528912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solid-state NMR studies of the membrane-bound closed state of the colicin E1 channel domain in lipid bilayers.
    Kim Y; Valentine K; Opella SJ; Schendel SL; Cramer WA
    Protein Sci; 1998 Feb; 7(2):342-8. PubMed ID: 9521110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resolving the 3D spatial orientation of helix I in the closed state of the colicin E1 channel domain by FRET. Insights into the integration mechanism.
    Lugo MR; Ho D; Merrill AR
    Arch Biochem Biophys; 2016 Oct; 608():52-73. PubMed ID: 27596846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence energy transfer distance measurements. The hydrophobic helical hairpin of colicin A in the membrane bound state.
    Lakey JH; Duché D; González-Mañas JM; Baty D; Pattus F
    J Mol Biol; 1993 Apr; 230(3):1055-67. PubMed ID: 7683055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding pathway of the colicin E1 channel protein on a membrane surface.
    Lindeberg M; Zakharov SD; Cramer WA
    J Mol Biol; 2000 Jan; 295(3):679-92. PubMed ID: 10623556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tilted, extended, and lying in wait: the membrane-bound topology of residues Lys-381-Ser-405 of the colicin E1 channel domain.
    Wei Z; White D; Wang J; Musse AA; Merrill AR
    Biochemistry; 2007 May; 46(20):6074-85. PubMed ID: 17455912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.