These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10455140)

  • 41. Structure-function analysis of liver-type (GLUT2) and brain-type (GLUT3) glucose transporters: expression of chimeric transporters in Xenopus oocytes suggests an important role for putative transmembrane helix 7 in determining substrate selectivity.
    Arbuckle MI; Kane S; Porter LM; Seatter MJ; Gould GW
    Biochemistry; 1996 Dec; 35(51):16519-27. PubMed ID: 8987985
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Substitution at Pro385 of GLUT1 perturbs the glucose transport function by reducing conformational flexibility.
    Tamori Y; Hashiramoto M; Clark AE; Mori H; Muraoka A; Kadowaki T; Holman GD; Kasuga M
    J Biol Chem; 1994 Jan; 269(4):2982-6. PubMed ID: 8300630
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of the structural features of the C-terminus of GLUT1 that are required for transport catalytic activity.
    Muraoka A; Hashiramoto M; Clark AE; Edwards LC; Sakura H; Kadowaki T; Holman GD; Kasuga M
    Biochem J; 1995 Oct; 311 ( Pt 2)(Pt 2):699-704. PubMed ID: 7487915
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional consequences of an in vivo mutation in exon 10 of the human GLUT1 gene.
    Lange P; Gertsen E; Monden I; Klepper J; Keller K
    FEBS Lett; 2003 Dec; 555(2):274-8. PubMed ID: 14644427
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Entry of newly synthesized GLUT4 into the insulin-responsive storage compartment is dependent upon both the amino terminus and the large cytoplasmic loop.
    Khan AH; Capilla E; Hou JC; Watson RT; Smith JR; Pessin JE
    J Biol Chem; 2004 Sep; 279(36):37505-11. PubMed ID: 15247212
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transmembrane segment 6 of the Glut1 glucose transporter is an outer helix and contains amino acid side chains essential for transport activity.
    Mueckler M; Makepeace C
    J Biol Chem; 2008 Apr; 283(17):11550-5. PubMed ID: 18245775
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular determinants of sugar transport regulation by ATP.
    Levine KB; Cloherty EK; Hamill S; Carruthers A
    Biochemistry; 2002 Oct; 41(42):12629-38. PubMed ID: 12379105
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence that facilitative glucose transporters may fold as beta-barrels.
    Fischbarg J; Cheung M; Czegledy F; Li J; Iserovich P; Kuang K; Hubbard J; Garner M; Rosen OM; Golde DW
    Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11658-62. PubMed ID: 8265604
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of glucose transporter topology and structural dynamics.
    Blodgett DM; Graybill C; Carruthers A
    J Biol Chem; 2008 Dec; 283(52):36416-24. PubMed ID: 18981181
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix 8.
    Seatter MJ; Kane S; Porter LM; Gould GW
    Biochem Soc Trans; 1997 Aug; 25(3):474S. PubMed ID: 9388695
    [No Abstract]   [Full Text] [Related]  

  • 51. Structural comparison of GLUT1 to GLUT3 reveal transport regulation mechanism in sugar porter family.
    Custódio TF; Paulsen PA; Frain KM; Pedersen BP
    Life Sci Alliance; 2021 Apr; 4(4):. PubMed ID: 33536238
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins.
    Burant CF; Bell GI
    Biochemistry; 1992 Oct; 31(42):10414-20. PubMed ID: 1420159
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subcellular distribution and activity of glucose transporter isoforms GLUT1 and GLUT4 transiently expressed in COS-7 cells.
    Schürmann A; Monden I; Joost HG; Keller K
    Biochim Biophys Acta; 1992 Jul; 1131(3):245-52. PubMed ID: 1627641
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Membrane topology of the human Na+/glucose cotransporter SGLT1.
    Turk E; Kerner CJ; Lostao MP; Wright EM
    J Biol Chem; 1996 Jan; 271(4):1925-34. PubMed ID: 8567640
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional importance of GGXG sequence motifs in putative reentrant loops of 2HCT and ESS transport proteins.
    Dobrowolski A; Lolkema JS
    Biochemistry; 2009 Aug; 48(31):7448-56. PubMed ID: 19594131
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of NH2-terminal positively charged residues in establishing membrane protein topology.
    Parks GD; Lamb RA
    J Biol Chem; 1993 Sep; 268(25):19101-9. PubMed ID: 8103052
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Replacement of both tryptophan residues at 388 and 412 completely abolished cytochalasin B photolabelling of the GLUT1 glucose transporter.
    Inukai K; Asano T; Katagiri H; Anai M; Funaki M; Ishihara H; Tsukuda K; Kikuchi M; Yazaki Y; Oka Y
    Biochem J; 1994 Sep; 302 ( Pt 2)(Pt 2):355-61. PubMed ID: 8092986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of conserved residues in hydrophilic loop 8-9 of the lactose permease.
    Pazdernik NJ; Jessen-Marshall AE; Brooker RJ
    J Bacteriol; 1997 Feb; 179(3):735-41. PubMed ID: 9006028
    [TBL] [Abstract][Full Text] [Related]  

  • 59. From triple cysteine mutants to the cysteine-less glucose transporter GLUT1: a functional analysis.
    Wellner M; Monden I; Keller K
    FEBS Lett; 1995 Aug; 370(1-2):19-22. PubMed ID: 7649297
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Different mammalian facilitative glucose transporters expressed in Xenopus oocytes.
    Keller K; Mueckler M
    Biomed Biochim Acta; 1990; 49(12):1201-3. PubMed ID: 2097992
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.