BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 10455269)

  • 41. Prevention of nitrate tolerance by long-term treatment with statins.
    Fontaine D; Otto A; Fontaine J; Berkenboom G
    Cardiovasc Drugs Ther; 2003 Mar; 17(2):123-8. PubMed ID: 12975593
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Opposing roles of p47phox in basal versus angiotensin II-stimulated alterations in vascular O2- production, vascular tone, and mitogen-activated protein kinase activation.
    Li JM; Wheatcroft S; Fan LM; Kearney MT; Shah AM
    Circulation; 2004 Mar; 109(10):1307-13. PubMed ID: 14993144
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Release of intact endothelium-derived relaxing factor depends on endothelial superoxide dismutase activity.
    Mügge A; Elwell JH; Peterson TE; Harrison DG
    Am J Physiol; 1991 Feb; 260(2 Pt 1):C219-25. PubMed ID: 1847583
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential sensitivity of basal and acetylcholine-stimulated activity of nitric oxide to destruction by superoxide anion in rat aorta.
    Mian KB; Martin W
    Br J Pharmacol; 1995 Jul; 115(6):993-1000. PubMed ID: 7582532
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Interaction between superoxide anion and nitric oxide in the regulation of vascular endothelial function.
    Laight DW; Kaw AV; Carrier MJ; Anggård EE
    Br J Pharmacol; 1998 May; 124(1):238-44. PubMed ID: 9630365
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of endogenous hydrogen peroxide in the development of nitrate tolerance.
    Ghatta S; Hemmer RB; Uppala S; O'Rourke ST
    Vascul Pharmacol; 2007 Apr; 46(4):247-52. PubMed ID: 17157562
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension.
    Laursen JB; Rajagopalan S; Galis Z; Tarpey M; Freeman BA; Harrison DG
    Circulation; 1997 Feb; 95(3):588-93. PubMed ID: 9024144
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nitroglycerin tolerance: different mechanisms in vascular segments with or without intact endothelial function.
    Gruhn N; Boesgaard S; Andersen C; Aldershvile J
    J Cardiovasc Pharmacol; 2002 Aug; 40(2):201-9. PubMed ID: 12131549
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of increased production of superoxide anions by NAD(P)H oxidase and xanthine oxidase in prolonged endotoxemia.
    Brandes RP; Koddenberg G; Gwinner W; Kim Dy; Kruse HJ; Busse R; Mügge A
    Hypertension; 1999 May; 33(5):1243-9. PubMed ID: 10334819
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Developmental changes in endothelium-dependent vasodilation and the influence of superoxide anions in perinatal rabbit pulmonary arteries.
    Morecroft I; MacLean MR
    Br J Pharmacol; 1998 Dec; 125(7):1585-93. PubMed ID: 9884088
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of NADH and NADPH on superoxide levels and cerebral vascular tone.
    Didion SP; Faraci FM
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H688-95. PubMed ID: 11788419
    [TBL] [Abstract][Full Text] [Related]  

  • 52. YC-1 enhances the responsiveness of tolerant vascular smooth muscle to glyceryl trinitrate.
    O'Reilly DA; McLaughlin BE; Marks GS; Brien JF; Nakatsu K
    Can J Physiol Pharmacol; 2001 Jan; 79(1):43-8. PubMed ID: 11201500
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nitrovasodilator-induced relaxation and tolerance development in porcine vena cordis magna: dependence on intact endothelium.
    Kojda G; Beck JK; Meyer W; Noack E
    Br J Pharmacol; 1994 Jun; 112(2):533-40. PubMed ID: 7521258
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Loss of endothelium-derived nitric oxide in rabbit aorta by oxidant stress: restoration by superoxide dismutase mimetics.
    MacKenzie A; Martin W
    Br J Pharmacol; 1998 Jun; 124(4):719-28. PubMed ID: 9690864
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Lactate and PO2 modulate superoxide anion production in bovine cardiac myocytes: potential role of NADH oxidase.
    Mohazzab-H KM; Kaminski PM; Wolin MS
    Circulation; 1997 Jul; 96(2):614-20. PubMed ID: 9244234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An NADPH oxidase superoxide-generating system in the rabbit aorta.
    Pagano PJ; Ito Y; Tornheim K; Gallop PM; Tauber AI; Cohen RA
    Am J Physiol; 1995 Jun; 268(6 Pt 2):H2274-80. PubMed ID: 7611477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of role for oxidant stress in vascular tolerance development to glyceryl trinitrate in vitro.
    Laight DW; Carrier MJ; Anggård EE
    Br J Pharmacol; 1997 Apr; 120(8):1477-82. PubMed ID: 9113368
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vascular NADH oxidase is involved in impaired endothelium-dependent vasodilation in OLETF rats, a model of type 2 diabetes.
    Kim YK; Lee MS; Son SM; Kim IJ; Lee WS; Rhim BY; Hong KW; Kim CD
    Diabetes; 2002 Feb; 51(2):522-7. PubMed ID: 11812764
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Superoxide contributes to vascular dysfunction in mice that express human renin and angiotensinogen.
    Didion SP; Ryan MJ; Baumbach GL; Sigmund CD; Faraci FM
    Am J Physiol Heart Circ Physiol; 2002 Oct; 283(4):H1569-76. PubMed ID: 12234811
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vasodilation induced by acetylcholine and by glyceryl trinitrate in rat aortic and mesenteric vasculature.
    Khan MT; Jothianandan D; Matsunaga K; Furchgott RF
    J Vasc Res; 1992; 29(1):20-8. PubMed ID: 1554863
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.