BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10455418)

  • 1. Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine.
    Boyd M; Cunningham SH; Brown MM; Mairs RJ; Wheldon TE
    Gene Ther; 1999 Jun; 6(6):1147-52. PubMed ID: 10455418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression in UVW glioma cells of the noradrenaline transporter gene, driven by the telomerase RNA promoter, induces active uptake of [131I]MIBG and clonogenic cell kill.
    Boyd M; Mairs RJ; Mairs SC; Wilson L; Livingstone A; Cunningham SH; Brown MM; Quigg M; Keith WN
    Oncogene; 2001 Nov; 20(53):7804-8. PubMed ID: 11753659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gene therapy/targeted radiotherapy strategy for radiation cell kill by.
    Boyd M; Mairs RJ; Cunningham SH; Mairs SC; McCluskey A; Livingstone A; Stevenson K; Brown MM; Wilson L; Carlin S; Wheldon TE
    J Gene Med; 2001; 3(2):165-72. PubMed ID: 11318115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An efficient targeted radiotherapy/gene therapy strategy utilising human telomerase promoters and radioastatine and harnessing radiation-mediated bystander effects.
    Boyd M; Mairs RJ; Keith WN; Ross SC; Welsh P; Akabani G; Owens J; Vaidyanathan G; Carruthers R; Dorrens J; Zalutsky MR
    J Gene Med; 2004 Aug; 6(8):937-47. PubMed ID: 15293352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiation quality-dependent bystander effects elicited by targeted radionuclides.
    Boyd M; Sorensen A; McCluskey AG; Mairs RJ
    J Pharm Pharmacol; 2008 Aug; 60(8):951-8. PubMed ID: 18644188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of targeted radiotherapy/gene therapy to bladder cancer cell lines.
    Fullerton NE; Mairs RJ; Kirk D; Keith WN; Carruthers R; McCluskey AG; Brown M; Wilson L; Boyd M
    Eur Urol; 2005 Feb; 47(2):250-6. PubMed ID: 15661422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transfectant mosaic spheroids: a new model for evaluation of tumour cell killing in targeted radiotherapy and experimental gene therapy.
    Boyd M; Mairs SC; Stevenson K; Livingstone A; Clark AM; Ross SC; Mairs RJ
    J Gene Med; 2002; 4(5):567-76. PubMed ID: 12221650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transfectant mosaic xenograft model for evaluation of targeted radiotherapy in combination with gene therapy in vivo.
    Mairs RJ; Ross SC; McCluskey AG; Boyd M
    J Nucl Med; 2007 Sep; 48(9):1519-26. PubMed ID: 17704246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Therapeutic effect of m-[131I]- and m-[125I]iodobenzylguanidine on neuroblastoma multicellular tumor spheroids of different sizes.
    Weber W; Weber J; Senekowitsch-Schmidtke R
    Cancer Res; 1996 Dec; 56(23):5428-34. PubMed ID: 8968097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [131I]meta-iodobenzylguanidine and topotecan combination treatment of tumors expressing the noradrenaline transporter.
    McCluskey AG; Boyd M; Ross SC; Cosimo E; Clark AM; Angerson WJ; Gaze MN; Mairs RJ
    Clin Cancer Res; 2005 Nov; 11(21):7929-37. PubMed ID: 16278418
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiation-induced biologic bystander effect elicited in vitro by targeted radiopharmaceuticals labeled with alpha-, beta-, and auger electron-emitting radionuclides.
    Boyd M; Ross SC; Dorrens J; Fullerton NE; Tan KW; Zalutsky MR; Mairs RJ
    J Nucl Med; 2006 Jun; 47(6):1007-15. PubMed ID: 16741311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of radiohaloanalogues of meta-iodobenzylguanidine (MIBG) for a combined gene- and targeted radiotherapy approach to bladder carcinoma.
    Fullerton NE; Boyd M; Ross SC; Pimlott SL; Babich J; Kirk D; Zalutsky MR; Mairs RJ
    Med Chem; 2005 Nov; 1(6):611-8. PubMed ID: 16787344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a real-time polymerase chain reaction assay for prediction of the uptake of meta-[(131)I]iodobenzylguanidine by neuroblastoma tumors.
    Carlin S; Mairs RJ; McCluskey AG; Tweddle DA; Sprigg A; Estlin C; Board J; George RE; Ellershaw C; Pearson AD; Lunec J; Montaldo PG; Ponzoni M; van Eck-Smit BL; Hoefnagel CA; van den Brug MD; Tytgat GA; Caron HN
    Clin Cancer Res; 2003 Aug; 9(9):3338-44. PubMed ID: 12960120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combining a targeted radiotherapy and gene therapy approach for adenocarcinoma of prostate.
    Fullerton NE; Boyd M; Mairs RJ; Keith WN; Alderwish O; Brown MM; Livingstone A; Kirk D
    Prostate Cancer Prostatic Dis; 2004; 7(4):355-63. PubMed ID: 15477875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental targeted radioiodide therapy following transfection of the sodium iodide symporter gene: effect on clonogenicity in both two-and three-dimensional models.
    Carlin S; Cunningham SH; Boyd M; McCluskey AG; Mairs RJ
    Cancer Gene Ther; 2000 Dec; 7(12):1529-36. PubMed ID: 11228531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [131I meta-iodobenzylguanidine in combination with hyperbaric oxygen therapy in the treatment of prognostically high-risk forms of neuroblastoma].
    Stanková J; Kavan P; Krízová H; Hermanská E; Dosel P; Sázel M
    Cas Lek Cesk; 2001 Jan; 140(1):13-7. PubMed ID: 11242978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No-carrier-added iodine-131-MIBG: evaluation of a therapeutic preparation.
    Mairs RJ; Cunningham SH; Russell J; Armour A; Owens J; McKellar K; Gaze MN
    J Nucl Med; 1995 Jun; 36(6):1088-95. PubMed ID: 7769433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo evaluation of a cancer therapy strategy combining HSV1716-mediated oncolysis with gene transfer and targeted radiotherapy.
    Sorensen A; Mairs RJ; Braidwood L; Joyce C; Conner J; Pimlott S; Brown M; Boyd M
    J Nucl Med; 2012 Apr; 53(4):647-54. PubMed ID: 22414636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uptake of mIBG and catecholamines in noradrenaline- and organic cation transporter-expressing cells: potential use of corticosterone for a preferred uptake in neuroblastoma- and pheochromocytoma cells.
    Bayer M; Kuçi Z; Schömig E; Gründemann D; Dittmann H; Handgretinger R; Bruchelt G
    Nucl Med Biol; 2009 Apr; 36(3):287-94. PubMed ID: 19324274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the norepinephrine transporter as a reporter gene for non-invasive imaging of genetically modified cells.
    Anton M; Wagner B; Haubner R; Bodenstein C; Essien BE; Bönisch H; Schwaiger M; Gansbacher B; Weber WA
    J Gene Med; 2004 Jan; 6(1):119-26. PubMed ID: 14716684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.