These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10455490)

  • 1. Enhancement of maltose utilisation by Saccharomyces cerevisiae in medium containing fermentable hexoses.
    Hazell B; Attfield P
    J Ind Microbiol Biotechnol; 1999 Jun; 22(6):627-632. PubMed ID: 10455490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of SNF1 on Maltose Metabolism and Leavening Ability of Baker's Yeast in Lean Dough.
    Zhang CY; Bai XW; Lin X; Liu XE; Xiao DG
    J Food Sci; 2015 Dec; 80(12):M2879-85. PubMed ID: 26580148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of MAL61 and MAL62 overexpression on maltose fermentation of baker's yeast in lean dough.
    Zhang CY; Lin X; Song HY; Xiao DG
    World J Microbiol Biotechnol; 2015 Aug; 31(8):1241-9. PubMed ID: 26003653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic evidence that high noninduced maltase and maltose permease activities, governed by MALx3-encoded transcriptional regulators, determine efficiency of gas production by baker's yeast in unsugared dough.
    Higgins VJ; Braidwood M; Bell P; Bissinger P; Dawes IW; Attfield PV
    Appl Environ Microbiol; 1999 Feb; 65(2):680-5. PubMed ID: 9925600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced leavening properties of baker's yeast overexpressing MAL62 with deletion of MIG1 in lean dough.
    Sun X; Zhang C; Dong J; Wu M; Zhang Y; Xiao D
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1533-9. PubMed ID: 22669197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional analysis of the global repressor Tup1 for maltose metabolism in Saccharomyces cerevisiae: different roles of the functional domains.
    Lin X; Yu AQ; Zhang CY; Pi L; Bai XW; Xiao DG
    Microb Cell Fact; 2017 Nov; 16(1):194. PubMed ID: 29121937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of maltose fermentation genes in the baking yeast strains of Saccharomyces cerevisiae.
    Oda Y; Tonomura K
    Lett Appl Microbiol; 1996 Oct; 23(4):266-8. PubMed ID: 8987701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Elm1, Tos3, and Sak1 Protein Kinases in the Maltose Metabolism of Baker's Yeast.
    Yang X; Meng L; Lin X; Jiang HY; Hu XP; Li CF
    Front Microbiol; 2021; 12():665261. PubMed ID: 34140941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugar utilization patterns and respiro-fermentative metabolism in the baker's yeast Torulaspora delbrueckii.
    Alves-Araújo C; Pacheco A; Almeida MJ; Spencer-Martins I; Leão C; Sousa MJ
    Microbiology (Reading); 2007 Mar; 153(Pt 3):898-904. PubMed ID: 17322210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of GLC7 and REG1 deletion on maltose metabolism and leavening ability of baker's yeast in lean dough.
    Lin X; Zhang CY; Bai XW; Xiao DG
    J Biotechnol; 2015 Sep; 209():1-6. PubMed ID: 26073997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of Saccharomyces cerevisiae growth by simultaneous uptake of glucose and maltose.
    Hatanaka H; Mitsunaga H; Fukusaki E
    J Biosci Bioeng; 2018 Jan; 125(1):52-58. PubMed ID: 28919251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of zymohexoses and maltose in maltose fermentation by baker's yeast.
    SUOMALAINEN H; AXELSON E; OURA E
    Biochim Biophys Acta; 1956 May; 20(2):319-22. PubMed ID: 13328856
    [No Abstract]   [Full Text] [Related]  

  • 13. Clustering of MAL genes in Hansenula polymorpha: cloning of the maltose permease gene and expression from the divergent intergenic region between the maltose permease and maltase genes.
    Viigand K; Tammus K; Alamäe T
    FEMS Yeast Res; 2005 Nov; 5(11):1019-28. PubMed ID: 16103021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derepression of a baker's yeast strain for maltose utilization is associated with severe deregulation of HXT gene expression.
    Salema-Oom M; De Sousa HR; Assunção M; Gonçalves P; Spencer-Martins I
    J Appl Microbiol; 2011 Jan; 110(1):364-74. PubMed ID: 21091593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extracellular maltotriose hydrolysis by Saccharomyces cerevisiae cells lacking the AGT1 permease.
    Alves SL; Thevelein JM; Stambuk BU
    Lett Appl Microbiol; 2018 Oct; 67(4):377-383. PubMed ID: 29992585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a second trans-acting gene controlling maltose fermentation in Saccharomyces carlsbergensis.
    Dubin RA; Perkins EL; Needleman RB; Michels CA
    Mol Cell Biol; 1986 Aug; 6(8):2757-65. PubMed ID: 3537726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of SNF4 and deletions of REG1- and REG2-enhanced maltose metabolism and leavening ability of baker's yeast in lean dough.
    Lin X; Zhang CY; Meng L; Bai XW; Xiao DG
    J Ind Microbiol Biotechnol; 2018 Sep; 45(9):827-838. PubMed ID: 29936578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast.
    Ohdate T; Omura F; Hatanaka H; Zhou Y; Takagi M; Goshima T; Akao T; Ono E
    PLoS One; 2018; 13(6):e0198744. PubMed ID: 29894505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attachment of MAL32-encoded maltase on the outside of yeast cells improves maltotriose utilization.
    Dietvorst J; Blieck L; Brandt R; Van Dijck P; Steensma HY
    Yeast; 2007 Jan; 24(1):27-38. PubMed ID: 17192852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of fermentative capacities of industrial baking and wild-type yeasts of the species Saccharomyces cerevisiae in different sugar media.
    Bell PJ; Higgins VJ; Attfield PV
    Lett Appl Microbiol; 2001 Apr; 32(4):224-9. PubMed ID: 11298930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.