These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 10456054)

  • 21. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns.
    Galea JM; Vazquez A; Pasricha N; de Xivry JJ; Celnik P
    Cereb Cortex; 2011 Aug; 21(8):1761-70. PubMed ID: 21139077
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Premotor Cortical-Cerebellar Reorganization in a Macaque Model of Primary Motor Cortical Lesion and Recovery.
    Yamamoto T; Hayashi T; Murata Y; Ose T; Higo N
    J Neurosci; 2019 Oct; 39(43):8484-8496. PubMed ID: 31582526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cerebellum: connections and functions.
    Glickstein M; Doron K
    Cerebellum; 2008; 7(4):589-94. PubMed ID: 19002543
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Task specific influences of Parkinson's disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries.
    Lewis MM; Slagle CG; Smith AB; Truong Y; Bai P; McKeown MJ; Mailman RB; Belger A; Huang X
    Neuroscience; 2007 Jun; 147(1):224-35. PubMed ID: 17499933
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A neural model of cerebellar learning for arm movement control: cortico-spino-cerebellar dynamics.
    Contreras-Vidal JL; Grossberg S; Bullock D
    Learn Mem; 1997; 3(6):475-502. PubMed ID: 10456112
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning.
    Penhune VB; Steele CJ
    Behav Brain Res; 2012 Jan; 226(2):579-91. PubMed ID: 22004979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. fMRI investigation of cortical and subcortical networks in the learning of abstract and effector-specific representations of motor sequences.
    Bapi RS; Miyapuram KP; Graydon FX; Doya K
    Neuroimage; 2006 Aug; 32(2):714-27. PubMed ID: 16798015
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study.
    Küper M; Wünnemann MJ; Thürling M; Stefanescu RM; Maderwald S; Elles HG; Göricke S; Ladd ME; Timmann D
    Hum Brain Mapp; 2014 Apr; 35(4):1574-86. PubMed ID: 23568448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain areas involved in the control of speed during a motor sequence of the foot: real movement versus mental imagery.
    Sauvage C; Jissendi P; Seignan S; Manto M; Habas C
    J Neuroradiol; 2013 Oct; 40(4):267-80. PubMed ID: 23433722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cerebellar anodal tDCS increases implicit learning when strategic re-aiming is suppressed in sensorimotor adaptation.
    Leow LA; Marinovic W; Riek S; Carroll TJ
    PLoS One; 2017; 12(7):e0179977. PubMed ID: 28686607
    [TBL] [Abstract][Full Text] [Related]  

  • 31. fMRI reveals two distinct cerebral networks subserving speech motor control.
    Riecker A; Mathiak K; Wildgruber D; Erb M; Hertrich I; Grodd W; Ackermann H
    Neurology; 2005 Feb; 64(4):700-6. PubMed ID: 15728295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cerebellar degeneration affects cortico-cortical connectivity in motor learning networks.
    Tzvi E; Zimmermann C; Bey R; Münte TF; Nitschke M; Krämer UM
    Neuroimage Clin; 2017; 16():66-78. PubMed ID: 28761810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Motor network disruption in essential tremor: a functional and effective connectivity study.
    Buijink AW; van der Stouwe AM; Broersma M; Sharifi S; Groot PF; Speelman JD; Maurits NM; van Rootselaar AF
    Brain; 2015 Oct; 138(Pt 10):2934-47. PubMed ID: 26248468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rostral premotor cortex as a gateway between motor and cognitive networks.
    Hanakawa T
    Neurosci Res; 2011 Jun; 70(2):144-54. PubMed ID: 21382425
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of visual training on predicting complex action sequences.
    Cross ES; Stadler W; Parkinson J; Schütz-Bosbach S; Prinz W
    Hum Brain Mapp; 2013 Feb; 34(2):467-86. PubMed ID: 22102260
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brain mechanisms for preparing increasingly complex sensory to motor transformations.
    Gorbet DJ; Staines WR; Sergio LE
    Neuroimage; 2004 Nov; 23(3):1100-11. PubMed ID: 15528110
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transfer of memory trace of cerebellum-dependent motor learning in human prism adaptation: a model study.
    Nagao S; Honda T; Yamazaki T
    Neural Netw; 2013 Nov; 47():72-80. PubMed ID: 23462699
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multizonal Cerebellar Influence Over Sensorimotor Areas of the Rat Cerebral Cortex.
    Aoki S; Coulon P; Ruigrok TJH
    Cereb Cortex; 2019 Feb; 29(2):598-614. PubMed ID: 29300895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The multifaceted nature of the relationship between performance and brain activity in motor sequence learning.
    Orban P; Peigneux P; Lungu O; Albouy G; Breton E; Laberenne F; Benali H; Maquet P; Doyon J
    Neuroimage; 2010 Jan; 49(1):694-702. PubMed ID: 19732838
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distributed motor commands in the limb premotor network.
    Houk JC; Keifer J; Barto AG
    Trends Neurosci; 1993 Jan; 16(1):27-33. PubMed ID: 7679234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.