BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10457096)

  • 1. Tetracaine can inhibit contractions initiated by a voltage-sensitive release mechanism in guinea-pig ventricular myocytes.
    Mason CA; Ferrier GR
    J Physiol; 1999 Sep; 519 Pt 3(Pt 3):851-65. PubMed ID: 10457096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of cAMP-dependent protein kinase A in activation of a voltage-sensitive release mechanism for cardiac contraction in guinea-pig myocytes.
    Ferrier GR; Zhu J; Redondo IM; Howlett SE
    J Physiol; 1998 Nov; 513 ( Pt 1)(Pt 1):185-201. PubMed ID: 9782169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of a voltage-sensitive calcium release mechanism to contraction in cardiac ventricular myocytes.
    Howlett SE; Zhu JQ; Ferrier GR
    Am J Physiol; 1998 Jan; 274(1):H155-70. PubMed ID: 9458864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In contrast to forskolin and 3-isobutyl-1-methylxanthine, amrinone stimulates the cardiac voltage-sensitive release mechanism without increasing calcium-induced calcium release.
    Xiong W; Moore HM; Howlett SE; Ferrier GR
    J Pharmacol Exp Ther; 2001 Sep; 298(3):954-63. PubMed ID: 11504790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contractions in guinea-pig ventricular myocytes triggered by a calcium-release mechanism separate from Na+ and L-currents.
    Ferrier GR; Howlett SE
    J Physiol; 1995 Apr; 484 ( Pt 1)(Pt 1):107-22. PubMed ID: 7602513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of docosahexaenoic acid on contractions and L-type Ca2+ current in adult cardiac myocytes.
    Ferrier GR; Redondo I; Zhu J; Murphy MG
    Cardiovasc Res; 2002 Jun; 54(3):601-10. PubMed ID: 12031706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of a voltage-sensitive release mechanism by Ca(2+)-calmodulin-dependent kinase in cardiac myocytes.
    Zhu J; Ferrier GR
    Am J Physiol Heart Circ Physiol; 2000 Nov; 279(5):H2104-15. PubMed ID: 11045943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of contraction and relaxation by membrane potential in cardiac ventricular myocytes.
    Ferrier GR; Redondo IM; Mason CA; Mapplebeck C; Howlett SE
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1618-26. PubMed ID: 10775142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The voltage-sensitive release mechanism of excitation contraction coupling in rabbit cardiac muscle is explained by calcium-induced calcium release.
    Griffiths H; MacLeod KT
    J Gen Physiol; 2003 May; 121(5):353-73. PubMed ID: 12719483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of voltage-sensitive release mechanism in depression of cardiac contraction in myopathic hamsters.
    Howlett SE; Xiong W; Mapplebeck CL; Ferrier GR
    Am J Physiol; 1999 Nov; 277(5):H1690-700. PubMed ID: 10564121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-dependent Ca2+ release from the SR of feline ventricular myocytes is explained by Ca2+-induced Ca2+ release.
    Piacentino V; Dipla K; Gaughan JP; Houser SR
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):533-48. PubMed ID: 10718736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of tetracaine on stimulated contractions, sarcoplasmic reticulum Ca2+ content and membrane current in isolated rat ventricular myocytes.
    Overend CL; O'Neill SC; Eisner DA
    J Physiol; 1998 Mar; 507 ( Pt 3)(Pt 3):759-69. PubMed ID: 9508837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydropyridine receptors functioning as voltage sensors in cardiac myocytes.
    Mackiewicz U; Emanuel K; Lewartowski B
    J Physiol Pharmacol; 2000 Dec; 51(4 Pt 2):777-98. PubMed ID: 11220488
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of phosphodiesterase-sensitive and -resistant analogs of cAMP on initiation of contraction in cardiac ventricular myocytes.
    Ferrier GR; Howlett SE
    J Pharmacol Exp Ther; 2003 Jul; 306(1):166-78. PubMed ID: 12665542
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells.
    Beuckelmann DJ; Wier WG
    J Physiol; 1988 Nov; 405():233-55. PubMed ID: 2475607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of sodium-calcium exchange in activation of contraction in rat ventricle.
    Bouchard RA; Clark RB; Giles WR
    J Physiol; 1993 Dec; 472():391-413. PubMed ID: 8145151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation-contraction coupling in single guinea-pig ventricular myocytes exposed to hydrogen peroxide.
    Goldhaber JI; Liu E
    J Physiol; 1994 May; 477(Pt 1):135-47. PubMed ID: 8071880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of tetracaine and procaine on skinned muscle fibres depend on free calcium.
    Pike GK; Abramson JJ; Salama G
    J Muscle Res Cell Motil; 1989 Oct; 10(5):337-49. PubMed ID: 2556441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac excitation-contraction coupling: role of membrane potential in regulation of contraction.
    Ferrier GR; Howlett SE
    Am J Physiol Heart Circ Physiol; 2001 May; 280(5):H1928-44. PubMed ID: 11299192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IP3-mediated Ca2+ increases do not involve the ryanodine receptor, but ryanodine receptor antagonists reduce IP3-mediated Ca2+ increases in guinea-pig colonic smooth muscle cells.
    MacMillan D; Chalmers S; Muir TC; McCarron JG
    J Physiol; 2005 Dec; 569(Pt 2):533-44. PubMed ID: 16195318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.