These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10457192)

  • 41. Concentration-dependent suppression by beta-adrenergic antagonists of the shift in ocular dominance following monocular deprivation in kitten visual cortex.
    Shirokawa T; Kasamatsu T
    Neuroscience; 1986 Aug; 18(4):1035-46. PubMed ID: 2876398
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Injection of MK-801 affects ocular dominance shifts more than visual activity.
    Daw NW; Gordon B; Fox KD; Flavin HJ; Kirsch JD; Beaver CJ; Ji Q; Reid SN; Czepita D
    J Neurophysiol; 1999 Jan; 81(1):204-15. PubMed ID: 9914281
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex.
    Pietrasanta M; Restani L; Cerri C; Olcese U; Medini P; Caleo M
    Eur J Neurosci; 2014 Jul; 40(1):2283-92. PubMed ID: 24689940
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex.
    He HY; Hodos W; Quinlan EM
    J Neurosci; 2006 Mar; 26(11):2951-5. PubMed ID: 16540572
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Early alcohol exposure impairs ocular dominance plasticity throughout the critical period.
    Medina AE; Ramoa AS
    Brain Res Dev Brain Res; 2005 Jun; 157(1):107-11. PubMed ID: 15939092
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex.
    Beaver CJ; Ji Q; Fischer QS; Daw NW
    Nat Neurosci; 2001 Feb; 4(2):159-63. PubMed ID: 11175876
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Monocular deprivation induces homosynaptic long-term depression in visual cortex.
    Rittenhouse CD; Shouval HZ; Paradiso MA; Bear MF
    Nature; 1999 Jan; 397(6717):347-50. PubMed ID: 9950426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. c-Fos activity mapping reveals differential effects of noradrenaline and serotonin depletion on the regulation of ocular dominance plasticity in rats.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2013 Apr; 235():1-9. PubMed ID: 23333670
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhancement of mRNA expression of tissue-type plasminogen activator by L-threo-3,4-dihydroxyphenylserine in association with ocular dominance plasticity.
    Mataga N; Imamura K; Shiomitsu T; Yoshimura Y; Fukamauchi K; Watanabe Y
    Neurosci Lett; 1996 Nov; 218(3):149-52. PubMed ID: 8945750
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of dark rearing on phosphorylation of neurotrophin Trk receptors.
    Viegi A; Cotrufo T; Berardi N; Mascia L; Maffei L
    Eur J Neurosci; 2002 Nov; 16(10):1925-30. PubMed ID: 12453056
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Lifelong learning: ocular dominance plasticity in mouse visual cortex.
    Hofer SB; Mrsic-Flogel TD; Bonhoeffer T; Hübener M
    Curr Opin Neurobiol; 2006 Aug; 16(4):451-9. PubMed ID: 16837188
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nerve growth factor induced modification of presynaptic elements in adult visual cortex in vivo.
    Liu Y; Meiri KF; Cynader MS; Gu Q
    Brain Res; 1996 Sep; 732(1-2):36-42. PubMed ID: 8891266
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of visual experience in activating critical period in cat visual cortex.
    Mower GD; Christen WG
    J Neurophysiol; 1985 Feb; 53(2):572-89. PubMed ID: 3981230
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nerve growth factor prevents the amblyopic effects of monocular deprivation.
    Domenici L; Berardi N; Carmignoto G; Vantini G; Maffei L
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8811-5. PubMed ID: 1924342
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nerve growth factor (NGF) uptake and transport following injection in the developing rat visual cortex.
    Domenici L; Fontanesi G; Cattaneo A; Bagnoli P; Maffei L
    Vis Neurosci; 1994; 11(6):1093-102. PubMed ID: 7841119
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif268.
    Chaudhuri A; Matsubara JA; Cynader MS
    Vis Neurosci; 1995; 12(1):35-50. PubMed ID: 7718501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Blockade of endogenous ligands of trkB inhibits formation of ocular dominance columns.
    Cabelli RJ; Shelton DL; Segal RA; Shatz CJ
    Neuron; 1997 Jul; 19(1):63-76. PubMed ID: 9247264
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Blockade of cyclic AMP-dependent protein kinase does not prevent the reverse ocular dominance shift in kitten visual cortex.
    Shimegi S; Fischer QS; Yang Y; Sato H; Daw NW
    J Neurophysiol; 2003 Dec; 90(6):4027-32. PubMed ID: 12944540
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Experience-enabled enhancement of adult visual cortex function.
    Tschetter WW; Alam NM; Yee CW; Gorz M; Douglas RM; Sagdullaev B; Prusky GT
    J Neurosci; 2013 Mar; 33(12):5362-6. PubMed ID: 23516301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.