These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 10458279)
21. Influence of sterilization on injectable bone biomaterials. Zahraoui C; Sharrock P Bone; 1999 Aug; 25(2 Suppl):63S-65S. PubMed ID: 10458278 [TBL] [Abstract][Full Text] [Related]
22. Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. Weiss P; Obadia L; Magne D; Bourges X; Rau C; Weitkamp T; Khairoun I; Bouler JM; Chappard D; Gauthier O; Daculsi G Biomaterials; 2003 Nov; 24(25):4591-601. PubMed ID: 12951002 [TBL] [Abstract][Full Text] [Related]
23. [Comparative study on using TTCP and CTCP ceramic artificial bone for repairing segment defect of long bone]. Shi X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Dec; 19(4):586-8. PubMed ID: 12561354 [TBL] [Abstract][Full Text] [Related]
24. The association of hydrogel and biphasic calcium phosphate in the treatment of dehiscence-type peri-implant defects: an experimental study in dogs. Struillou X; Rakic M; Badran Z; Macquigneau L; Colombeix C; Pilet P; Verner C; Gauthier O; Weiss P; Soueidan A J Mater Sci Mater Med; 2013 Dec; 24(12):2749-60. PubMed ID: 23912791 [TBL] [Abstract][Full Text] [Related]
25. Synthesis, characterization of calcium phosphates/polyurethane composites for weight-bearing implants. Yoshii T; Dumas JE; Okawa A; Spengler DM; Guelcher SA J Biomed Mater Res B Appl Biomater; 2012 Jan; 100(1):32-40. PubMed ID: 21953899 [TBL] [Abstract][Full Text] [Related]
26. Gallium enhances reconstructive properties of a calcium phosphate bone biomaterial. Strazic Geljic I; Melis N; Boukhechba F; Schaub S; Mellier C; Janvier P; Laugier JP; Bouler JM; Verron E; Scimeca JC J Tissue Eng Regen Med; 2018 Feb; 12(2):e854-e866. PubMed ID: 28079305 [TBL] [Abstract][Full Text] [Related]
27. [Animal implantation with a new type of chitosan microspheres/calcium phosphate cement]. Meng D; Xie QF Beijing Da Xue Xue Bao Yi Xue Ban; 2009 Feb; 41(1):80-5. PubMed ID: 19221571 [TBL] [Abstract][Full Text] [Related]
28. Fabrication and evaluation of a new composite composed of tricalcium phosphate, gelatin and chi-li-saan as a bone substitute. Yao CH; Tsai CC; Chen YS; Chang CJ; Liu BS; Lin CC; Tsuang YH Am J Chin Med; 2002; 30(4):471-82. PubMed ID: 12568275 [TBL] [Abstract][Full Text] [Related]
29. Preparation and property of a novel bone graft composite consisting of rhBMP-2 loaded PLGA microspheres and calcium phosphate cement. Fei Z; Hu Y; Wu D; Wu H; Lu R; Bai J; Song H J Mater Sci Mater Med; 2008 Mar; 19(3):1109-16. PubMed ID: 17701313 [TBL] [Abstract][Full Text] [Related]
30. Barbieri D; Yuan H; Ismailoğlu AS; de Bruijn JD Tissue Eng Part A; 2017 Dec; 23(23-24):1310-1320. PubMed ID: 28132596 [TBL] [Abstract][Full Text] [Related]
31. In vivo biological performance of composites combining micro-macroporous biphasic calcium phosphate granules and fibrin sealant. Jegoux F; Goyenvalle E; Bagot D'arc M; Aguado E; Daculsi G Arch Orthop Trauma Surg; 2005 Apr; 125(3):153-9. PubMed ID: 15761734 [TBL] [Abstract][Full Text] [Related]
32. A novel injectable, cohesive and toughened Si-HPMC (silanized-hydroxypropyl methylcellulose) composite calcium phosphate cement for bone substitution. Liu W; Zhang J; Rethore G; Khairoun K; Pilet P; Tancret F; Bouler JM; Weiss P Acta Biomater; 2014 Jul; 10(7):3335-45. PubMed ID: 24657196 [TBL] [Abstract][Full Text] [Related]
33. Calcium-deficient apatite: a first in vivo study concerning bone ingrowth. Bourgeois B; Laboux O; Obadia L; Gauthier O; Betti E; Aguado E; Daculsi G; Bouler JM J Biomed Mater Res A; 2003 Jun; 65(3):402-8. PubMed ID: 12746888 [TBL] [Abstract][Full Text] [Related]
34. Fourier-transform infrared spectroscopy study of an organic-mineral composite for bone and dental substitute materials. Weiss P; Lapkowski M; Legeros RZ; Bouler JM; Jean A; Daculsi G J Mater Sci Mater Med; 1997 Oct; 8(10):621-9. PubMed ID: 15348831 [TBL] [Abstract][Full Text] [Related]
35. A Periosteum-Inspired 3D Hydrogel-Bioceramic Composite for Enhanced Bone Regeneration . Chun YY; Wang JK; Tan NS; Chan PP; Tan TT; Choong C Macromol Biosci; 2016 Feb; 16(2):276-87. PubMed ID: 26445013 [TBL] [Abstract][Full Text] [Related]
36. Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. Sadiasa A; Sarkar SK; Franco RA; Min YK; Lee BT J Biomater Appl; 2014 Jan; 28(5):739-56. PubMed ID: 23470354 [TBL] [Abstract][Full Text] [Related]
37. Bone repair using a new injectable self-crosslinkable bone substitute. Fellah BH; Weiss P; Gauthier O; Rouillon T; Pilet P; Daculsi G; Layrolle P J Orthop Res; 2006 Apr; 24(4):628-35. PubMed ID: 16514642 [TBL] [Abstract][Full Text] [Related]
38. Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin. Lin FH; Yao CH; Sun JS; Liu HC; Huang CW Biomaterials; 1998 May; 19(10):905-17. PubMed ID: 9690832 [TBL] [Abstract][Full Text] [Related]
39. Nuclear magnetic resonance spectroscopy of bone substitutes. Legrand AP; Sfihi H; Bouler JM Bone; 1999 Aug; 25(2 Suppl):103S-105S. PubMed ID: 10458287 [TBL] [Abstract][Full Text] [Related]
40. [Experimental study of the effect of new bone formation on new type artificial bone composed of bioactive ceramics]. Zhu M; Zeng Y; Sun T; Peng Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Mar; 19(3):174-7. PubMed ID: 15828468 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]