These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
213 related articles for article (PubMed ID: 10458282)
1. Raman microspectrometry studies of brushite cement: in vivo evolution in a sheep model. Penel G; Leroy N; Van Landuyt P; Flautre B; Hardouin P; Lemaître J; Leroy G Bone; 1999 Aug; 25(2 Suppl):81S-84S. PubMed ID: 10458282 [TBL] [Abstract][Full Text] [Related]
2. Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. Constantz BR; Barr BM; Ison IC; Fulmer MT; Baker J; McKinney L; Goodman SB; Gunasekaren S; Delaney DC; Ross J; Poser RD J Biomed Mater Res; 1998; 43(4):451-61. PubMed ID: 9855204 [TBL] [Abstract][Full Text] [Related]
3. Effect of processing conditions of dicalcium phosphate cements on graft resorption and bone formation. Sheikh Z; Zhang YL; Tamimi F; Barralet J Acta Biomater; 2017 Apr; 53():526-535. PubMed ID: 28213100 [TBL] [Abstract][Full Text] [Related]
4. Biocompatibility and resorption of a brushite calcium phosphate cement. Theiss F; Apelt D; Brand B; Kutter A; Zlinszky K; Bohner M; Matter S; Frei C; Auer JA; von Rechenberg B Biomaterials; 2005 Jul; 26(21):4383-94. PubMed ID: 15701367 [TBL] [Abstract][Full Text] [Related]
5. Vertical bone augmentation with granulated brushite cement set in glycolic acid. Mariño FT; Torres J; Tresguerres I; Jerez LB; Cabarcos EL J Biomed Mater Res A; 2007 Apr; 81(1):93-102. PubMed ID: 17109427 [TBL] [Abstract][Full Text] [Related]
6. Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Bohner M; Theiss F; Apelt D; Hirsiger W; Houriet R; Rizzoli G; Gnos E; Frei C; Auer JA; von Rechenberg B Biomaterials; 2003 Sep; 24(20):3463-74. PubMed ID: 12809775 [TBL] [Abstract][Full Text] [Related]
7. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Huan Z; Chang J Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779 [TBL] [Abstract][Full Text] [Related]
8. Injectable dicalcium phosphate bone cement prepared from biphasic calcium phosphate extracted from lamb bone. Tariq U; Hussain R; Tufail K; Haider Z; Tariq R; Ali J Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109863. PubMed ID: 31349467 [TBL] [Abstract][Full Text] [Related]
9. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement. Rödel M; Teßmar J; Groll J; Gbureck U Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213 [TBL] [Abstract][Full Text] [Related]
10. Brushite-based calcium phosphate cement with multichannel hydroxyapatite granule loading for improved bone regeneration. Sarkar SK; Lee BY; Padalhin AR; Sarker A; Carpena N; Kim B; Paul K; Choi HJ; Bae SH; Lee BT J Biomater Appl; 2016 Jan; 30(6):823-37. PubMed ID: 26333790 [TBL] [Abstract][Full Text] [Related]
11. Effect of silica gel on the cohesion, properties and biological performance of brushite cement. Alkhraisat MH; Rueda C; Jerez LB; Tamimi Mariño F; Torres J; Gbureck U; Lopez Cabarcos E Acta Biomater; 2010 Jan; 6(1):257-65. PubMed ID: 19523541 [TBL] [Abstract][Full Text] [Related]
12. A ready-to-use acidic, brushite-forming calcium phosphate cement. Luo J; Engqvist H; Persson C Acta Biomater; 2018 Nov; 81():304-314. PubMed ID: 30291976 [TBL] [Abstract][Full Text] [Related]
13. Volume effect on biological properties of a calcium phosphate hydraulic cement: experimental study in sheep. Flautre B; Delecourt C; Blary MC; Van Landuyt P; Lemaître J; Hardouin P Bone; 1999 Aug; 25(2 Suppl):35S-39S. PubMed ID: 10458272 [TBL] [Abstract][Full Text] [Related]
14. Characterization of chlorhexidine-releasing, fast-setting, brushite bone cements. Young AM; Ng PY; Gbureck U; Nazhat SN; Barralet JE; Hofmann MP Acta Biomater; 2008 Jul; 4(4):1081-8. PubMed ID: 18313374 [TBL] [Abstract][Full Text] [Related]
15. Gold is for the mistress, silver for the maid: Enhanced mechanical properties, osteoinduction and antibacterial activity due to iron doping of tricalcium phosphate bone cements. Uskoković V; Graziani V; Wu VM; Fadeeva IV; Fomin AS; Presniakov IA; Fosca M; Ortenzi M; Caminiti R; Rau JV Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():798-810. PubMed ID: 30423766 [TBL] [Abstract][Full Text] [Related]
16. Hydration mechanism of a calcium phosphate cement modified with phytic acid. Hurle K; Weichhold J; Brueckner M; Gbureck U; Brueckner T; Goetz-Neunhoeffer F Acta Biomater; 2018 Oct; 80():378-389. PubMed ID: 30195085 [TBL] [Abstract][Full Text] [Related]
17. Bone colonization of beta-TCP granules incorporated in brushite cements. Flautre B; Maynou C; Lemaitre J; Van Landuyt P; Hardouin P J Biomed Mater Res; 2002; 63(4):413-7. PubMed ID: 12115749 [TBL] [Abstract][Full Text] [Related]
18. Beta-tricalcium phosphate release from brushite cement surface. Alkhraisat MH; Mariño FT; Retama JR; Jerez LB; López-Cabarcos E J Biomed Mater Res A; 2008 Mar; 84(3):710-7. PubMed ID: 17635024 [TBL] [Abstract][Full Text] [Related]
19. Trivalent chromium incorporated in a crystalline calcium phosphate matrix accelerates materials degradation and bone formation in vivo. Rentsch B; Bernhardt A; Henß A; Ray S; Rentsch C; Schamel M; Gbureck U; Gelinsky M; Rammelt S; Lode A Acta Biomater; 2018 Mar; 69():332-341. PubMed ID: 29355718 [TBL] [Abstract][Full Text] [Related]
20. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Tsai CH; Lin RM; Ju CP; Chern Lin JH Biomaterials; 2008 Mar; 29(8):984-93. PubMed ID: 18096221 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]