These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 10458745)

  • 1. Enantioselective recognition mechanism of secondary alcohol by surfactant-coated lipases in nonaqueous media.
    Kamiya N; Kasagi H; Inoue M; Kusunoki K; Goto M
    Biotechnol Bioeng; 1999 Oct; 65(2):227-32. PubMed ID: 10458745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic and dynamic kinetic resolution of secondary alcohols with ionic-surfactant-coated Burkholderia cepacia lipase: substrate scope and enantioselectivity.
    Kim C; Lee J; Cho J; Oh Y; Choi YK; Choi E; Park J; Kim MJ
    J Org Chem; 2013 Mar; 78(6):2571-8. PubMed ID: 23406287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of absolute configuration of secondary alcohols using lipase-catalyzed kinetic resolutions.
    Jing Q; Kazlauskas RJ
    Chirality; 2008 May; 20(5):724-35. PubMed ID: 18278808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic-surfactant-coated Burkholderia cepacia lipase as a highly active and enantioselective catalyst for the dynamic kinetic resolution of secondary alcohols.
    Kim H; Choi YK; Lee J; Lee E; Park J; Kim MJ
    Angew Chem Int Ed Engl; 2011 Nov; 50(46):10944-8. PubMed ID: 21954139
    [No Abstract]   [Full Text] [Related]  

  • 5. Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: a quantitative model.
    Schulz T; Pleiss J; Schmid RD
    Protein Sci; 2000 Jun; 9(6):1053-62. PubMed ID: 10892799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of enantioselectivity of lipase catalyzed kinetic resolution using umbrella sampling.
    Mathpati AC; Bhanage BM
    J Biotechnol; 2018 Oct; 283():70-80. PubMed ID: 30031094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of lipases on hydrophobilized zirconia nanoparticles: highly enantioselective and reusable biocatalysts.
    Chen YZ; Yang CT; Ching CB; Xu R
    Langmuir; 2008 Aug; 24(16):8877-84. PubMed ID: 18656972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Homogeneous esterification by lipase from Burkholderia cepacia in the fluorinated solvent.
    Shipovskov S
    Biotechnol Prog; 2008; 24(6):1262-6. PubMed ID: 19194939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic resolution of (+/-)-1-phenylethanol in [Bmim][PF6] using high activity preparations of lipases.
    Shah S; Gupta MN
    Bioorg Med Chem Lett; 2007 Feb; 17(4):921-4. PubMed ID: 17157018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implication of substrate-assisted catalysis on improving lipase activity or enantioselectivity in organic solvents.
    Tsai SW; Chen CC; Yang HS; Ng IS; Chen TL
    Biochim Biophys Acta; 2006 Aug; 1764(8):1424-8. PubMed ID: 16919508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Basis of Aqueous-like Activity of Lipase Treated with Glucose-Headed Surfactant in Organic Solvent.
    Lee HS; Oh Y; Kim MJ; Im W
    J Phys Chem B; 2018 Nov; 122(47):10659-10668. PubMed ID: 30398874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereochemistry of a diastereoisomeric amphiphile and the species of the lipase influence enzyme activity in the transesterification catalyzed by a lipase-co-lyophilizate with the amphiphile in organic media.
    Mine Y; Fukunaga K; Yoshimoto M; Nakao K; Sugimura Y
    Biotechnol Lett; 2003 Nov; 25(21):1863-7. PubMed ID: 14677713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 5-[4-(1-Hydroxyethyl)phenyl]-10,15,20-triphenylporphyrin as a probe of the transition-state conformation in hydrolase-catalyzed enantioselective transesterifications.
    Ema T; Jittani M; Furuie K; Utaka M; Sakai T
    J Org Chem; 2002 Apr; 67(7):2144-51. PubMed ID: 11925221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of gemini-type amphiphiles bearing cyclitol head groups and their application as high-performance modifiers for lipases.
    Mine Y; Fukunaga K; Samejima K; Yoshimoto M; Nakao K; Sugimura Y
    Carbohydr Res; 2004 Feb; 339(3):493-501. PubMed ID: 15013386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate specificity and kinetics of Candida rugosa lipase in organic media.
    Janssen AE; Vaidya AM; Halling PJ
    Enzyme Microb Technol; 1996 Apr; 18(5):340-6. PubMed ID: 8882001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular bioimprinting of lipases with surfactants and its functional consequences in low water media.
    Mukherjee J; Gupta MN
    Int J Biol Macromol; 2015 Nov; 81():544-51. PubMed ID: 26306412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen-bonding-driven enantioselective resolution against the Kazlauskas rule to afford γ-amino alcohols by Candida rugosa lipase.
    Min B; Park J; Sim YK; Jung S; Kim SH; Song JK; Kim BT; Park SY; Yun J; Park S; Lee H
    Chembiochem; 2015 Jan; 16(1):77-82. PubMed ID: 25477295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipase-catalyzed enantioselective esterification of (S)-naproxen hydroxyalkyl ester in organic media.
    Chang CS; Hsu CS
    Biotechnol Lett; 2003 Mar; 25(5):413-6. PubMed ID: 12882564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Esterification activity and conformation studies of Burkholderia cepacia lipase in conventional organic solvents, ionic liquids and their co-solvent mixture media.
    Pan S; Liu X; Xie Y; Yi Y; Li C; Yan Y; Liu Y
    Bioresour Technol; 2010 Dec; 101(24):9822-4. PubMed ID: 20713309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computer simulations of enantioselective ester hydrolyses catalyzed by Pseudomonas cepacia lipase.
    Tafi A; van Almsick A; Corelli F; Crusco M; Laumen KE; Schneider MP; Botta M
    J Org Chem; 2000 Jun; 65(12):3659-65. PubMed ID: 10864749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.