These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10459692)

  • 1. The lower entrainable limit of rat circadian rhythm to sinusoidal light intensity cycles: a preliminary study.
    Usui S; Okazaki T; Takahashi Y
    Psychiatry Clin Neurosci; 1999 Apr; 53(2):215-7. PubMed ID: 10459692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Range of entrainment of rat circadian rhythms to sinusoidal light-intensity cycles.
    Usui S; Takahashi Y; Okazaki T
    Am J Physiol Regul Integr Comp Physiol; 2000 May; 278(5):R1148-56. PubMed ID: 10801281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scotopic illumination enhances entrainment of circadian rhythms to lengthening light:dark cycles.
    Gorman MR; Kendall M; Elliott JA
    J Biol Rhythms; 2005 Feb; 20(1):38-48. PubMed ID: 15654069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss of circadian behavioural rhythms in rats kept in constant darkness.
    Usui S; Okazaki T
    Psychiatry Clin Neurosci; 2002 Jun; 56(3):217-8. PubMed ID: 12047564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian behavioral and melatonin rhythms in the European starling under light-dark cycles with steadily changing periods: evidence for close mutual coupling?
    Kumar V; Van't Hof TJ; Gwinner E
    Horm Behav; 2007 Nov; 52(4):409-16. PubMed ID: 17714714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Entrainment of 2 subjective nights by daily light:dark:light:dark cycles in 3 rodent species.
    Gorman MR; Elliott JA
    J Biol Rhythms; 2003 Dec; 18(6):502-12. PubMed ID: 14667151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scheduled exposures to a novel environment with a running-wheel differentially accelerate re-entrainment of mice peripheral clocks to new light-dark cycles.
    Yamanaka Y; Honma S; Honma K
    Genes Cells; 2008 May; 13(5):497-507. PubMed ID: 18429821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermocyclic and photocyclic entrainment of circadian locomotor activity rhythms in sleepy lizards, Tiliqua rugosa.
    Ellis DJ; Firth BT; Belan I
    Chronobiol Int; 2009 Oct; 26(7):1369-88. PubMed ID: 19916837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrainment of circadian rhythm by ambient temperature cycles in mice.
    Refinetti R
    J Biol Rhythms; 2010 Aug; 25(4):247-56. PubMed ID: 20679494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of transient and continuous wheel running activity on the upper and lower limits of entrainment to light-dark cycles in female hamsters.
    Chiesa JJ; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(2):215-34. PubMed ID: 17453844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of forward and backward transitions in light intensities in tau-illuminance curves of the rat motor activity rhythm under constant dim light.
    Cambras T; Díez-Noguera A
    Chronobiol Int; 2012 Jul; 29(6):693-701. PubMed ID: 22734570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exposure to T-cycles of 22 and 23 h during lactation modifies the later dissociation of motor activity and temperature circadian rhythms in rats.
    Anglès-Pujolràs M; Díez-Noguera A; Cambras T
    Chronobiol Int; 2007; 24(6):1049-64. PubMed ID: 18075798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New findings regarding light intensity and its effects as a zeitgeber in the Sprague-Dawley rat.
    Tischler AC; Winget CM; Holley DC; Deroshia CW; Gott J; Mele G; Callahan PX
    Physiologist; 1993 Feb; 36(1 Suppl):S125-6. PubMed ID: 11538509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term exposure to constant light promotes strong circadian phase-resetting responses to nonphotic stimuli in Syrian hamsters.
    Knoch ME; Gobes SM; Pavlovska I; Su C; Mistlberger RE; Glass JD
    Eur J Neurosci; 2004 May; 19(10):2779-90. PubMed ID: 15147311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro.
    Molyneux PC; Dahlgren MK; Harrington ME
    Brain Res; 2008 Sep; 1228():127-34. PubMed ID: 18598681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of photoperiod on rat motor activity rhythm at the lower limit of entrainment.
    Cambras T; Chiesa J; Araujo J; Díez-Noguera A
    J Biol Rhythms; 2004 Jun; 19(3):216-25. PubMed ID: 15155008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda).
    Chiesa JJ; Aguzzi J; García JA; Sardà F; de la Iglesia HO
    J Biol Rhythms; 2010 Aug; 25(4):277-87. PubMed ID: 20679497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian behavioral rhythms during various light-intensity cycles in rats.
    Usui S; Takahashi Y; Honda Y; Ebihara S
    Physiol Behav; 1989 Sep; 46(3):521-8. PubMed ID: 2623078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Daily behavioral rhythmicity and organization of the suprachiasmatic nuclei in the diurnal rodent, Lemniscomys barbarus.
    Lahmam M; El M'rabet A; Ouarour A; Pévet P; Challet E; Vuillez P
    Chronobiol Int; 2008 Nov; 25(6):882-904. PubMed ID: 19005894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combinations of bright light, scheduled dark, sunglasses, and melatonin to facilitate circadian entrainment to night shift work.
    Crowley SJ; Lee C; Tseng CY; Fogg LF; Eastman CI
    J Biol Rhythms; 2003 Dec; 18(6):513-23. PubMed ID: 14667152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.