These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45 related articles for article (PubMed ID: 10459768)
1. Pertussis toxin-sensitive G proteins as mediators of stretch-induced decrease in nitric-oxide release of osteoblast-like cells. Hara F; Fukuda K; Ueno M; Hamanishi C; Tanaka S J Orthop Res; 1999 Jul; 17(4):593-7. PubMed ID: 10459768 [TBL] [Abstract][Full Text] [Related]
2. Cyclic tensile stretch inhibition of nitric oxide release from osteoblast-like cells is both G protein and actin-dependent. Hara F; Fukuda K; Asada S; Matsukawa M; Hamanishi C J Orthop Res; 2001 Jan; 19(1):126-31. PubMed ID: 11332608 [TBL] [Abstract][Full Text] [Related]
3. Steady and transient fluid shear stress stimulate NO release in osteoblasts through distinct biochemical pathways. McAllister TN; Frangos JA J Bone Miner Res; 1999 Jun; 14(6):930-6. PubMed ID: 10352101 [TBL] [Abstract][Full Text] [Related]
4. Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. Das P; Schurman DJ; Smith RL J Orthop Res; 1997 Jan; 15(1):87-93. PubMed ID: 9066531 [TBL] [Abstract][Full Text] [Related]
5. Essential role for G proteins in prostate cancer cell growth and signaling. Kue PF; Daaka Y J Urol; 2000 Dec; 164(6):2162-7. PubMed ID: 11061948 [TBL] [Abstract][Full Text] [Related]
6. PTH-dependent adenylyl cyclase activation in SaOS-2 cells: passage dependent effects on G protein interactions. Gao H; Bodine PV; Murrills R; Bex FJ; Bilezikian JP; Morris SA J Cell Physiol; 2002 Oct; 193(1):10-8. PubMed ID: 12209875 [TBL] [Abstract][Full Text] [Related]
8. Cyclic tensile stretch stimulates the release of reactive oxygen species from osteoblast-like cells. Yamamoto N; Fukuda K; Matsushita T; Matsukawa M; Hara F; Hamanishi C Calcif Tissue Int; 2005 Jun; 76(6):433-8. PubMed ID: 15895284 [TBL] [Abstract][Full Text] [Related]
9. Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. Fan X; Rahnert JA; Murphy TC; Nanes MS; Greenfield EM; Rubin J J Cell Physiol; 2006 May; 207(2):454-60. PubMed ID: 16419041 [TBL] [Abstract][Full Text] [Related]
10. Galpha(i2), Galpha(i3)and Galpha(o) are all required for normal muscarinic inhibition of the cardiac calcium channels in nodal/atrial-like cultured cardiocytes. Ye C; Sowell MO; Vassilev PM; Milstone DS; Mortensen RM J Mol Cell Cardiol; 1999 Sep; 31(9):1771-81. PubMed ID: 10471359 [TBL] [Abstract][Full Text] [Related]
11. [The effect of fluid shear stress on the NO synthesis of rat osteoblast-like cells]. Qiao J; Chen W; Tian W; Li S; Luo S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):575-8. PubMed ID: 15357435 [TBL] [Abstract][Full Text] [Related]
12. Role of G proteins in shear stress-mediated nitric oxide production by endothelial cells. Kuchan MJ; Jo H; Frangos JA Am J Physiol; 1994 Sep; 267(3 Pt 1):C753-8. PubMed ID: 7943204 [TBL] [Abstract][Full Text] [Related]
13. Involvement of cAMP-dependent protein kinase and pertussis toxin-sensitive G-proteins in CGRP mediated JNK activation in human neuroblastoma cell line. Disa J; Parameswaran N; Nambi P; Aiyar N Neuropeptides; 2000; 34(3-4):229-33. PubMed ID: 11021985 [TBL] [Abstract][Full Text] [Related]
14. The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. McGarry JG; Klein-Nulend J; Prendergast PJ Biochem Biophys Res Commun; 2005 Apr; 330(1):341-8. PubMed ID: 15781270 [TBL] [Abstract][Full Text] [Related]
15. Effects of pulsatile shear stress on signaling mechanisms controlling nitric oxide production, endothelial nitric oxide synthase phosphorylation, and expression in ovine fetoplacental artery endothelial cells. Li Y; Zheng J; Bird IM; Magness RR Endothelium; 2005; 12(1-2):21-39. PubMed ID: 16036314 [TBL] [Abstract][Full Text] [Related]
16. Fluid shear stress stimulates prostaglandin and nitric oxide release in bone marrow-derived preosteoclast-like cells. McAllister TN; Du T; Frangos JA Biochem Biophys Res Commun; 2000 Apr; 270(2):643-8. PubMed ID: 10753677 [TBL] [Abstract][Full Text] [Related]
17. Effects of pertussis toxin and galpha-protein-specific antibodies on phosphoinositide hydrolysis in rat brain membranes after cholinergic denervation and hippocampal sympathetic ingrowth. Kolasa K; Harrell LE; Parsons DS Exp Neurol; 2000 Feb; 161(2):724-32. PubMed ID: 10686091 [TBL] [Abstract][Full Text] [Related]
18. Pretreatment with low nitric oxide protects osteoblasts from high nitric oxide-induced apoptotic insults through regulation of c-Jun N-terminal kinase/c-Jun-mediated Bcl-2 gene expression and protein translocation. Tai YT; Cherng YG; Chang CC; Hwang YP; Chen JT; Chen RM J Orthop Res; 2007 May; 25(5):625-35. PubMed ID: 17262823 [TBL] [Abstract][Full Text] [Related]
19. IL-1beta-induced nitric oxide release from insulin-secreting beta-cells: further evidence for the involvement of GTP-binding proteins. Tannous M; Veluthakal R; Amin R; Kowluru A Diabetes Metab; 2002 Dec; 28(6 Pt 2):3S78-84; discussion 3S108-12. PubMed ID: 12688637 [TBL] [Abstract][Full Text] [Related]
20. The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Leaney JL; Tinker A Proc Natl Acad Sci U S A; 2000 May; 97(10):5651-6. PubMed ID: 10779550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]