These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10460134)

  • 1. Simulation of initial frontside and backside wear rates in a modular acetabular component with multiple screw holes.
    Kurtz SM; Ochoa JA; Hovey CB; White CV
    J Biomech; 1999 Sep; 32(9):967-76. PubMed ID: 10460134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backside nonconformity and locking restraints affect liner/shell load transfer mechanisms and relative motion in modular acetabular components for total hip replacement.
    Kurtz SM; Ochoa JA; White CV; Srivastav S; Cournoyer J
    J Biomech; 1998 May; 31(5):431-7. PubMed ID: 9727340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progress of backside wear in acetabular liners].
    Zhou K; Li S; Yang C; Qi X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Dec; 27(12):1453-6. PubMed ID: 24640364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation of the acetabular polyethylene liner and the backside gap.
    Yamaguchi M; Bauer TW; Hashimoto Y
    J Arthroplasty; 1999 Jun; 14(4):464-9. PubMed ID: 10428227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Backside wear, particle migration and effectiveness of screw hole plugs in acetabular hip joint replacement with cross-linked polyethylene.
    Braun S; Vardag S; Mueller U; Schroeder S; Sonntag R; Bormann T; Gotterbarm T; Kretzer JP
    Acta Biomater; 2019 Oct; 97():239-246. PubMed ID: 31374340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Backside wear in acetabular hip joint replacement.
    Braun S; Sonntag R; Schroeder S; Mueller U; Jaeger S; Gotterbarm T; Kretzer JP
    Acta Biomater; 2019 Jan; 83():467-476. PubMed ID: 30408561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Backside volumetric change in the polyethylene of uncemented acetabular components.
    Krieg AH; Speth BM; Ochsner PE
    J Bone Joint Surg Br; 2009 Aug; 91(8):1037-43. PubMed ID: 19651830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-high-molecular weight polyethylene wear: an in vitro comparison of acetabular metal types and polished surfaces.
    Shepard MF; Lieberman JR; Kabo JM
    J Arthroplasty; 1999 Oct; 14(7):860-6. PubMed ID: 10537263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impingement contributes to backside wear and screw-metallic shell fretting in modular acetabular cups.
    Kligman M; Furman BD; Padgett DE; Wright TM
    J Arthroplasty; 2007 Feb; 22(2):258-64. PubMed ID: 17275644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of backside polishing, cup angle, and polyethylene thickness on the contact stresses in metal-backed acetabular components.
    Kurtz SM; Edidin AA; Bartel DL
    J Biomech; 1997 Jun; 30(6):639-42. PubMed ID: 9165399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of temporal wear patterns of porous-coated acetabular components: distinguishing between true wear and so-called bedding-in.
    Sychterz CJ; Engh CA; Yang A; Engh CA
    J Bone Joint Surg Am; 1999 Jun; 81(6):821-30. PubMed ID: 10391547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sliding-distance-coupled finite element formulation for polyethylene wear in total hip arthroplasty.
    Maxian TA; Brown TD; Pedersen DR; Callaghan JJ
    J Biomech; 1996 May; 29(5):687-92. PubMed ID: 8707799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local head roughening as a factor contributing to variability of total hip wear: a finite element analysis.
    Brown TD; Stewart KJ; Nieman JC; Pedersen DR; Callaghan JJ
    J Biomech Eng; 2002 Dec; 124(6):691-8. PubMed ID: 12596637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimal backside surface changes observed in retrieved acetabular liners.
    Akbari A; Roy ME; Whiteside LA; Katerberg BJ; Schnettgoecke DJ
    J Arthroplasty; 2011 Aug; 26(5):686-92. PubMed ID: 20875939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of progressive wear on the contact mechanics of hip replacements--does the realistic surface profile matter?
    Wang L; Yang W; Peng X; Li D; Dong S; Zhang S; Zhu J; Jin Z
    J Biomech; 2015 Apr; 48(6):1112-8. PubMed ID: 25680298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple fully integrated contact-coupled wear prediction for ultra-high molecular weight polyethylene hip implants.
    Kang L; Galvin AL; Jin ZM; Fisher J
    Proc Inst Mech Eng H; 2006 Jan; 220(1):33-46. PubMed ID: 16459444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wear of the polyethylene liner-metallic shell interface in modular acetabular components. An in vitro analysis.
    Lieberman JR; Kay RM; Hamlet WP; Park SH; Kabo JM
    J Arthroplasty; 1996 Aug; 11(5):602-8. PubMed ID: 8872582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Backside Wear Analysis of Retrieved Acetabular Liners with a Press-Fit Locking Mechanism in Comparison to Wear Simulation In Vitro.
    Puente Reyna AL; Jäger M; Floerkemeier T; Frecher S; Delank KS; Schilling C; Grupp TM
    Biomed Res Int; 2016; 2016():8687131. PubMed ID: 27722174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact mechanics of metal-on-metal hip implants employing a metallic cup with a UHMWPE backing.
    Liu F; Jin ZM; Grigoris P; Hirt F; Rieker C
    Proc Inst Mech Eng H; 2003; 217(3):207-13. PubMed ID: 12807161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backside wear is low in retrieved modern, modular, and nonmodular acetabular liners.
    Della Valle AG; Rana A; Furman B; Sculco TP; Salvati EA
    Clin Orthop Relat Res; 2005 Nov; 440():184-91. PubMed ID: 16239805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.