BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 10460256)

  • 1. Mitochondrial clearance of cytosolic Ca(2+) in stimulated lizard motor nerve terminals proceeds without progressive elevation of mitochondrial matrix [Ca(2+)].
    David G
    J Neurosci; 1999 Sep; 19(17):7495-506. PubMed ID: 10460256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation-evoked increases in cytosolic [Ca(2+)] in mouse motor nerve terminals are limited by mitochondrial uptake and are temperature-dependent.
    David G; Barrett EF
    J Neurosci; 2000 Oct; 20(19):7290-6. PubMed ID: 11007886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that mitochondria buffer physiological Ca2+ loads in lizard motor nerve terminals.
    David G; Barrett JN; Barrett EF
    J Physiol; 1998 May; 509 ( Pt 1)(Pt 1):59-65. PubMed ID: 9547381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial Ca2+ uptake prevents desynchronization of quantal release and minimizes depletion during repetitive stimulation of mouse motor nerve terminals.
    David G; Barrett EF
    J Physiol; 2003 Apr; 548(Pt 2):425-38. PubMed ID: 12588898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries.
    Cheranov SY; Jaggar JH
    J Physiol; 2004 May; 556(Pt 3):755-71. PubMed ID: 14766935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative estimate of mitochondrial [Ca2+] in stimulated motor nerve terminals.
    David G; Talbot J; Barrett EF
    Cell Calcium; 2003 Mar; 33(3):197-206. PubMed ID: 12600806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for two calcium-dependent potassium conductances in lizard motor nerve terminals.
    Morita K; Barrett EF
    J Neurosci; 1990 Aug; 10(8):2614-25. PubMed ID: 1696981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extrusion of Ca2+ from mouse motor terminal mitochondria via a Na+-Ca2+ exchanger increases post-tetanic evoked release.
    García-Chacón LE; Nguyen KT; David G; Barrett EF
    J Physiol; 2006 Aug; 574(Pt 3):663-75. PubMed ID: 16613870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stimulation-induced mitochondrial [Ca2+] elevations in mouse motor terminals: comparison of wild-type with SOD1-G93A.
    Vila L; Barrett EF; Barrett JN
    J Physiol; 2003 Jun; 549(Pt 3):719-28. PubMed ID: 12717010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca(2+)-dependent Ca(2+) clearance via mitochondrial uptake and plasmalemmal extrusion in frog motor nerve terminals.
    Suzuki S; Osanai M; Mitsumoto N; Akita T; Narita K; Kijima H; Kuba K
    J Neurophysiol; 2002 Apr; 87(4):1816-23. PubMed ID: 11929903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic function is altered in snake K+-depolarized motor nerve terminals containing compromised mitochondria.
    Calupca MA; Prior C; Merriam LA; Hendricks GM; Parsons RL
    J Physiol; 2001 Apr; 532(Pt 1):217-27. PubMed ID: 11283236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of mitochondrial Ca2+ uptake affects phasic release from motor terminals differently depending on external [Ca2+].
    Talbot JD; David G; Barrett EF
    J Neurophysiol; 2003 Jul; 90(1):491-502. PubMed ID: 12672777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibitory effects of HgCl2 on excitation-secretion coupling at the motor nerve terminal and excitation-contraction coupling in the muscle cell.
    Røed A; Herlofson BB
    Cell Mol Neurobiol; 1994 Dec; 14(6):623-36. PubMed ID: 7543823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation-induced changes in [Ca2+] in lizard motor nerve terminals.
    David G; Barrett JN; Barrett EF
    J Physiol; 1997 Oct; 504 ( Pt 1)(Pt 1):83-96. PubMed ID: 9350620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel.
    Kannurpatti SS; Joshi PG; Joshi NB
    Neurochem Res; 2000 Dec; 25(12):1527-36. PubMed ID: 11152381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial inhibitors activate influx of external Ca(2+) in sea urchin sperm.
    Ardón F; Rodríguez-Miranda E; Beltrán C; Hernández-Cruz A; Darszon A
    Biochim Biophys Acta; 2009 Jan; 1787(1):15-24. PubMed ID: 19000650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulses of extracellular K+ produce two cytosolic Ca2+ transients that display different temperature dependence and carbonyl cyanide m-chlorophenyl sensitivity in SH-SY5Y cells.
    Montoya G JV; Sutachan JJ; Corrales A; Xu F; Blanck TJ; Recio-Pinto E
    Brain Res; 2008 Jun; 1213():12-26. PubMed ID: 18448083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions.
    Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J
    J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histological and electrophysiological investigation of lizard skeletal muscle.
    Proske U; Vaughan P
    J Physiol; 1968 Dec; 199(3):495-509. PubMed ID: 5710420
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of neuronal activity and mitochondrial metabolism as revealed by NAD(P)H fluorescence signals in organotypic hippocampal slice cultures of the rat.
    Kann O; Schuchmann S; Buchheim K; Heinemann U
    Neuroscience; 2003; 119(1):87-100. PubMed ID: 12763071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.