These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 10460262)
1. Identification of an interneuronal population that mediates recurrent inhibition of motoneurons in the developing chick spinal cord. Wenner P; O'Donovan MJ J Neurosci; 1999 Sep; 19(17):7557-67. PubMed ID: 10460262 [TBL] [Abstract][Full Text] [Related]
2. Mechanisms that initiate spontaneous network activity in the developing chick spinal cord. Wenner P; O'Donovan MJ J Neurophysiol; 2001 Sep; 86(3):1481-98. PubMed ID: 11535692 [TBL] [Abstract][Full Text] [Related]
3. Development of an inhibitory interneuronal circuit in the embryonic spinal cord. Xu H; Whelan PJ; Wenner P J Neurophysiol; 2005 May; 93(5):2922-33. PubMed ID: 15574794 [TBL] [Abstract][Full Text] [Related]
4. Developmental reorganization of the output of a GABAergic interneuronal circuit. Xu H; Clement A; Wright TM; Wenner P J Neurophysiol; 2007 Apr; 97(4):2769-79. PubMed ID: 17251359 [TBL] [Abstract][Full Text] [Related]
5. Involvement of GABA and glycine in recurrent inhibition of spinal motoneurons. Schneider SP; Fyffe RE J Neurophysiol; 1992 Aug; 68(2):397-406. PubMed ID: 1326603 [TBL] [Abstract][Full Text] [Related]
6. Topographical and physiological characterization of interneurons that express engrailed-1 in the embryonic chick spinal cord. Wenner P; O'Donovan MJ; Matise MP J Neurophysiol; 2000 Nov; 84(5):2651-7. PubMed ID: 11068006 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the circuits that generate spontaneous episodes of activity in the early embryonic mouse spinal cord. Hanson MG; Landmesser LT J Neurosci; 2003 Jan; 23(2):587-600. PubMed ID: 12533619 [TBL] [Abstract][Full Text] [Related]
8. Activity patterns and synaptic organization of ventrally located interneurons in the embryonic chick spinal cord. Ritter A; Wenner P; Ho S; Whelan PJ; O'Donovan MJ J Neurosci; 1999 May; 19(9):3457-71. PubMed ID: 10212306 [TBL] [Abstract][Full Text] [Related]
9. Pharmacological characterization of the rhythmic synaptic drive onto lumbosacral motoneurons in the chick embryo spinal cord. Sernagor E; Chub N; Ritter A; O'Donovan MJ J Neurosci; 1995 Nov; 15(11):7452-64. PubMed ID: 7472497 [TBL] [Abstract][Full Text] [Related]
10. Direct evidence for postsynaptic inhibition in the embryonic chick spinal cord. Velumian AA Brain Res; 1984 Jun; 316(2):229-39. PubMed ID: 6087995 [TBL] [Abstract][Full Text] [Related]
11. Principles of interneuron development learned from Renshaw cells and the motoneuron recurrent inhibitory circuit. Alvarez FJ; Benito-Gonzalez A; Siembab VC Ann N Y Acad Sci; 2013 Mar; 1279():22-31. PubMed ID: 23530999 [TBL] [Abstract][Full Text] [Related]
12. Identification of motoneurons and interneurons in the spinal network for escapes initiated by the mauthner cell in goldfish. Fetcho JR; Faber DS J Neurosci; 1988 Nov; 8(11):4192-213. PubMed ID: 3183720 [TBL] [Abstract][Full Text] [Related]
14. Development of spinal motor networks in the chick embryo. O'Donovan M; Sernagor E; Sholomenko G; Ho S; Antal M; Yee W J Exp Zool; 1992 Mar; 261(3):261-73. PubMed ID: 1629659 [TBL] [Abstract][Full Text] [Related]
15. Pax6 and engrailed 1 regulate two distinct aspects of renshaw cell development. Sapir T; Geiman EJ; Wang Z; Velasquez T; Mitsui S; Yoshihara Y; Frank E; Alvarez FJ; Goulding M J Neurosci; 2004 Feb; 24(5):1255-64. PubMed ID: 14762144 [TBL] [Abstract][Full Text] [Related]
16. A pharmacological study of Renshaw cell inhibition. Curtis DR; Game CJ; Lodge D; McCulloch RM J Physiol; 1976 Jun; 258(1):227-42. PubMed ID: 940060 [TBL] [Abstract][Full Text] [Related]
17. Cellular and synaptic actions of acetylcholine in the lamprey spinal cord. Quinlan KA; Buchanan JT J Neurophysiol; 2008 Aug; 100(2):1020-31. PubMed ID: 18550725 [TBL] [Abstract][Full Text] [Related]
18. Decorrelating actions of Renshaw interneurons on the firing of spinal motoneurons within a motor nucleus: a simulation study. Maltenfort MG; Heckman CJ; Rymer WZ J Neurophysiol; 1998 Jul; 80(1):309-23. PubMed ID: 9658052 [TBL] [Abstract][Full Text] [Related]
19. Transition from GABAergic to glycinergic synaptic transmission in newly formed spinal networks. Gao BX; Stricker C; Ziskind-Conhaim L J Neurophysiol; 2001 Jul; 86(1):492-502. PubMed ID: 11431527 [TBL] [Abstract][Full Text] [Related]
20. Early postnatal development of reciprocal Ia inhibition in the murine spinal cord. Wang Z; Li L; Goulding M; Frank E J Neurophysiol; 2008 Jul; 100(1):185-96. PubMed ID: 18463181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]