BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10460341)

  • 1. Constructing the suitable initial configuration of the membrane-protein system in molecular dynamics simulations.
    Tang YZ; Chen WZ; Wang CX; Shi YY
    Eur Biophys J; 1999; 28(6):478-88. PubMed ID: 10460341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer.
    Woolf TB; Roux B
    Proteins; 1996 Jan; 24(1):92-114. PubMed ID: 8628736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mixed atomistic and coarse-grained molecular dynamics: simulation of a membrane-bound ion channel.
    Shi Q; Izvekov S; Voth GA
    J Phys Chem B; 2006 Aug; 110(31):15045-8. PubMed ID: 16884212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gramicidin A backbone and side chain dynamics evaluated by molecular dynamics simulations and nuclear magnetic resonance experiments. I: molecular dynamics simulations.
    Ingólfsson HI; Li Y; Vostrikov VV; Gu H; Hinton JF; Koeppe RE; Roux B; Andersen OS
    J Phys Chem B; 2011 Jun; 115(22):7417-26. PubMed ID: 21574563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of the gramicidin A-dimyristoylphosphatidylcholine system with an ion in the channel pore region.
    Tang YZ; Chen WZ; Wang CX
    Eur Biophys J; 2000; 29(7):523-34. PubMed ID: 11156294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin.
    Harroun TA; Heller WT; Weiss TM; Yang L; Huang HW
    Biophys J; 1999 Jun; 76(6):3176-85. PubMed ID: 10354442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gramicidin A channel as a test ground for molecular dynamics force fields.
    Allen TW; Baştuğ T; Kuyucak S; Chung SH
    Biophys J; 2003 Apr; 84(4):2159-68. PubMed ID: 12668425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch.
    Basu I; Chattopadhyay A; Mukhopadhyay C
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):328-38. PubMed ID: 24125683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics generation of nonarbitrary membrane models reveals lipid orientational correlations.
    Takaoka Y; Pasenkiewicz-Gierula M; Miyagawa H; Kitamura K; Tamura Y; Kusumi A
    Biophys J; 2000 Dec; 79(6):3118-38. PubMed ID: 11106617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T; Gray-Weale A; Patra SM; Kuyucak S
    Biophys J; 2006 Apr; 90(7):2285-96. PubMed ID: 16415054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural, dynamic, and electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics simulations accelerated with graphical processing units (GPUs).
    Ganesan N; Bauer BA; Lucas TR; Patel S; Taufer M
    J Comput Chem; 2011 Nov; 32(14):2958-73. PubMed ID: 21793003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex.
    Chiu SW; Subramaniam S; Jakobsson E
    Biophys J; 1999 Apr; 76(4):1929-38. PubMed ID: 10096891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulation of conformational flexibility of alamethicin fragments in aqueous and membranous environment.
    Kothekar V; Mahajan K; Raha K; Gupta D
    J Biomol Struct Dyn; 1996 Dec; 14(3):303-16. PubMed ID: 9016408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy calculations of gramicidin dimer dissociation.
    Wanasundara SN; Krishnamurthy V; Chung SH
    J Phys Chem B; 2011 Nov; 115(46):13765-70. PubMed ID: 21988458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic detail peptide-membrane interactions: molecular dynamics simulation of gramicidin S in a DMPC bilayer.
    Mihailescu D; Smith JC
    Biophys J; 2000 Oct; 79(4):1718-30. PubMed ID: 11023880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The transmembrane domain of Neu in a lipid bilayer: molecular dynamics simulations.
    van der Ende BM; Sharom FJ; Davis JH
    Eur Biophys J; 2004 Nov; 33(7):596-610. PubMed ID: 15197512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the nonimmobilizer hexafluroethane on the model membrane dimyristoylphosphatidylcholine.
    Koubi L; Tarek M; Bandyopadhyay S; Klein ML; Scharf D
    Anesthesiology; 2002 Oct; 97(4):848-55. PubMed ID: 12357150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of surface tension into molecular dynamics simulation of an interface: a fluid phase lipid bilayer membrane.
    Chiu SW; Clark M; Balaji V; Subramaniam S; Scott HL; Jakobsson E
    Biophys J; 1995 Oct; 69(4):1230-45. PubMed ID: 8534794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Setting up and optimization of membrane protein simulations.
    Faraldo-Gómez JD; Smith GR; Sansom MS
    Eur Biophys J; 2002 Jun; 31(3):217-27. PubMed ID: 12029334
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale molecular dynamics simulations of general anesthetic effects on the ion channel in the fully hydrated membrane: the implication of molecular mechanisms of general anesthesia.
    Tang P; Xu Y
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16035-40. PubMed ID: 12438684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.