These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 10460919)

  • 21. The effect of capsule-filling machine vibrations on average fill weight.
    Llusa M; Faulhammer E; Biserni S; Calzolari V; Lawrence S; Bresciani M; Khinast J
    Int J Pharm; 2013 Sep; 454(1):381-7. PubMed ID: 23872302
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a design space and predictive statistical model for capsule filling of low-fill-weight inhalation products.
    Faulhammer E; Llusa M; Wahl PR; Paudel A; Lawrence S; Biserni S; Calzolari V; Khinast JG
    Drug Dev Ind Pharm; 2016; 42(2):221-30. PubMed ID: 26023991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Performance indicators for carrier-based DPIs: Carrier surface properties for capsule filling and API properties for in vitro aerosolisation.
    Faulhammer E; Zellnitz S; Wutscher T; Stranzinger S; Zimmer A; Paudel A
    Int J Pharm; 2018 Jan; 536(1):326-335. PubMed ID: 29217472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toward better understanding of powder avalanching and shear cell parameters of drug-excipient blends to design minimal weight variability into pharmaceutical capsules.
    Nalluri VR; Puchkov M; Kuentz M
    Int J Pharm; 2013 Feb; 442(1-2):49-56. PubMed ID: 22917747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applications of capsule dosing techniques for use in dry powder inhalers.
    Edwards D
    Ther Deliv; 2010 Jul; 1(1):195-201. PubMed ID: 22816126
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigations into the reduction of powder adhesion to stainless steel surfaces by surface modification to aid capsule filling.
    Podczeck F
    Int J Pharm; 1999 Feb; 178(1):93-100. PubMed ID: 10205629
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Low powder mass filling of dry powder inhalation formulations.
    Eskandar F; Lejeune M; Edge S
    Drug Dev Ind Pharm; 2011 Jan; 37(1):24-32. PubMed ID: 20738180
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying and reducing powder shear sensitivity when manufacturing capsules with lubricants.
    Blackwood D; Ketterhagen W; Kresevic J; Kushner J; Moriarty J; Mullarney MP
    Drug Dev Ind Pharm; 2018 Aug; 44(8):1350-1356. PubMed ID: 29712481
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling powder encapsulation in dosator-based machines: I. Theory.
    Khawam A
    Int J Pharm; 2011 Dec; 421(2):203-9. PubMed ID: 22019484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic modeling of a capsule filling process.
    Loidolt P; Madlmeir S; Khinast JG
    Int J Pharm; 2017 Oct; 532(1):47-54. PubMed ID: 28870766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The prediction of the bulk densities of powder mixtures, and its relationship to the filling of hard gelatin capsules.
    Newton JM; Bader F
    J Pharm Pharmacol; 1981 Oct; 33(10):621-6. PubMed ID: 6117613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flow behaviour of pharmaceutical powders during rotary die filling with a paddle feeder.
    Tang X; Zakhvatayeva A; Zhang L; Wu ZF; Sun P; Wu CY
    Int J Pharm; 2020 Jul; 585():119547. PubMed ID: 32569812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Residence time distribution of a continuously-operated capsule filling machine: Development of a measurement technique and comparison of three volume-reducing inserts.
    Kruisz J; Faulhammer E; Rehrl J; Scheibelhofer O; Witschnigg A; Khinast JG
    Int J Pharm; 2018 Oct; 550(1-2):180-189. PubMed ID: 30110621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of polymorphism on the manufacturability and in vitro dissolution of sulindac-containing hard gelatin capsules.
    Guadalupe Sánchez-González E; Yépez-Mulia L; Jesús Hernández-Abad V; Jung Cook H
    Pharm Dev Technol; 2015 May; 20(3):306-13. PubMed ID: 24417644
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Resistance to densification, tensile strength and capsule-filling performance of some pharmaceutical diluents.
    Nikolakakis I; Aragon OB; Malamataris S
    J Pharm Pharmacol; 1998 Jul; 50(7):713-21. PubMed ID: 9720619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of capsule type on aerodynamic performance of inhalation products: A case study using a formoterol-lactose binary or ternary blend.
    Wauthoz N; Hennia I; Ecenarro S; Amighi K
    Int J Pharm; 2018 Dec; 553(1-2):47-56. PubMed ID: 30321640
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of the capsule-filling dosator process via calibrated DEM simulations.
    Madlmeir S; Loidolt P; Khinast JG
    Int J Pharm; 2019 Aug; 567():118441. PubMed ID: 31212054
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An investigation of some factors influencing plug formation and fill weight in a dosing disk-type automatic capsule-filling machine.
    Shah KB; Augsburger LL; Marshall K
    J Pharm Sci; 1986 Mar; 75(3):291-6. PubMed ID: 3701614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the formulation requirements of dosator and dosing disc automatic capsule filling machines.
    Heda PK; Muteba K; Augsburger LL
    AAPS PharmSci; 2002; 4(3):E17. PubMed ID: 12423066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of dosator nozzle wall texture on capsule filling with the mG2 simulator.
    Jolliffe IG; Newton JM
    J Pharm Pharmacol; 1983 Jan; 35(1):7-11. PubMed ID: 6131973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.