These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 10462043)

  • 1. TOP mRNAs are translationally inhibited by a titratable repressor in both wheat germ extract and reticulocyte lysate.
    Biberman Y; Meyuhas O
    FEBS Lett; 1999 Aug; 456(3):357-60. PubMed ID: 10462043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational repression in eukaryotes: partial purification and characterization of a repressor of ferritin mRNA translation.
    Walden WE; Daniels-McQueen S; Brown PH; Gaffield L; Russell DA; Bielser D; Bailey LC; Thach RE
    Proc Natl Acad Sci U S A; 1988 Dec; 85(24):9503-7. PubMed ID: 3200835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translational activity of mouse protamine 1 messenger ribonucleoprotein particles in the reticulocyte and wheat germ cell-free translation systems.
    Kleene KC; Smith J
    Mol Reprod Dev; 1994 Jan; 37(1):12-20. PubMed ID: 7907489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of ribonuclease H activities present in two cell-free protein synthesizing systems, the wheat germ extract and the rabbit reticulocyte lysate.
    Cazenave C; Frank P; Büsen W
    Biochimie; 1993; 75(1-2):113-22. PubMed ID: 8389210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of rabbit globin mRNA translation by sequence-specific oligodeoxyribonucleotides.
    Blake KR; Murakami A; Miller PS
    Biochemistry; 1985 Oct; 24(22):6132-8. PubMed ID: 4084510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A special repressor/activator system controls distribution of mRNA between translationally active and inactive mRNPs in rabbit reticulocytes.
    Minich WB; Korneyeva NL; Berezin YV; Ovchinnikov LP
    FEBS Lett; 1989 Dec; 258(2):227-9. PubMed ID: 2599087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Translation of capped and uncapped vesicular stomatitis virus and reovirus mRNA'S. Sensitivity to m7GpppAm and ionic conditions.
    Bergmann JE; Lodish HF
    J Biol Chem; 1979 Jan; 254(2):459-68. PubMed ID: 216675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid-induced translation of TOP mRNAs is fully dependent on phosphatidylinositol 3-kinase-mediated signaling, is partially inhibited by rapamycin, and is independent of S6K1 and rpS6 phosphorylation.
    Tang H; Hornstein E; Stolovich M; Levy G; Livingstone M; Templeton D; Avruch J; Meyuhas O
    Mol Cell Biol; 2001 Dec; 21(24):8671-83. PubMed ID: 11713299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequences mediating the translation of mouse S16 ribosomal protein mRNA during myoblast differentiation and in vitro and possible control points for the in vitro translation.
    Hammond ML; Merrick W; Bowman LH
    Genes Dev; 1991 Sep; 5(9):1723-36. PubMed ID: 1885008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro translation.
    Jagus R; Joshi B; Miyamoto S; Beckler GS
    Curr Protoc Cell Biol; 2001 May; Chapter 11():Unit 11.2. PubMed ID: 18228307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The translational cis-regulatory element of mammalian ribosomal protein mRNAs is recognized by the plant translational apparatus.
    Shama S; Meyuhas O
    Eur J Biochem; 1996 Mar; 236(2):383-8. PubMed ID: 8612606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency of cell-free protein synthesis based on a crude cell extract from Escherichia coli, wheat germ, and rabbit reticulocytes.
    Hino M; Kataoka M; Kajimoto K; Yamamoto T; Kido J; Shinohara Y; Baba Y
    J Biotechnol; 2008 Jan; 133(2):183-9. PubMed ID: 17826860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vertebrate mRNAs with a 5'-terminal pyrimidine tract are candidates for translational repression in quiescent cells: characterization of the translational cis-regulatory element.
    Avni D; Shama S; Loreni F; Meyuhas O
    Mol Cell Biol; 1994 Jun; 14(6):3822-33. PubMed ID: 8196625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translation of partially purified poly(A)+ protamine messenger RNA components in wheat germ and rabbit reticulocyte cell-free systems. Evidence for translational control mechanisms.
    Gedamu L; Iatrou K; Dixon GH
    Biochim Biophys Acta; 1979 May; 562(3):481-94. PubMed ID: 454612
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Target-specific arrest of mRNA translation by antisense 2'-O-alkyloligoribonucleotides.
    Johansson HE; Belsham GJ; Sproat BS; Hentze MW
    Nucleic Acids Res; 1994 Nov; 22(22):4591-8. PubMed ID: 7984406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of in vitro translation by double-stranded RNA in mammalian cell mRNA preparations.
    Pratt G; Galpine A; Sharp N; Palmer S; Clemens MJ
    Nucleic Acids Res; 1988 Apr; 16(8):3497-510. PubMed ID: 2897658
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The putative iron-responsive element in the human erythroid 5-aminolevulinate synthase mRNA mediates translational control.
    Bhasker CR; Burgiel G; Neupert B; Emery-Goodman A; Kühn LC; May BK
    J Biol Chem; 1993 Jun; 268(17):12699-705. PubMed ID: 8509404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 5'-Terminal 7-methylguanosine and mRNA function. The effect of enzymatic decapping and of cap analogs on translation of tobacco-mosaic-virus RNA and globin mRNA in vitro.
    Wodnar-Filipowicz A; Szczesna E; Zan-Kowalczewska M; Muthukrishnan S; Szybiak U; Legocki AB; Filipowicz W
    Eur J Biochem; 1978 Dec; 92(1):69-80. PubMed ID: 729595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 5'-Terminal 7-methylguanosine in eukaryotic mRNA is required for translation.
    Muthukrishnan S; Both GW; Furuichi Y; Shatkin AJ
    Nature; 1975 May; 255(5503):33-7. PubMed ID: 165427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapamycin induces binding activity to the terminal oligopyrimidine tract of ribosomal protein mRNA in rats.
    Kakegawa T; Ito M; Hayakawa A; Matsuda M; Tamura S; Saito H; Kaspar RL; Kobayashi H
    Arch Biochem Biophys; 2002 Jun; 402(1):77-83. PubMed ID: 12051685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.