These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 10462080)

  • 1. p-Fluorophenylglycine in the urine of baboons treated with HPTP, the tetrahydropyridine analog of haloperidol.
    Mienie LJ; Bergh JJ; Bloomquist JR; Castagnoli N; Steyn SJ; Van der Schyf CJ
    Life Sci; 1999; 65(5):535-42. PubMed ID: 10462080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of the haloperidol tetrahydropyridine metabolite 4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)-4-oxobutyl]-1,2,3,6- tetrahydropyridine on dopamine receptor and transporter binding. A nonhuman primate 123I-iodobenzamide and 2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane single photon emission computed tomographic study.
    Oliver DW; Dormehl IC; Van der Schyf CJ; Neumeyer JL; Hugo N; Keeve R; Rossouw NT; Müller-Gärtner HW; Castagnoli N
    Arzneimittelforschung; 1997 Jun; 47(6):692-9. PubMed ID: 9239444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haloperidol and its tetrahydropyridine derivative (HPTP) are metabolized to potentially neurotoxic pyridinium species in the baboon.
    Avent KM; Usuki E; Eyles DW; Keeve R; Van der Schyf CJ; Castagnoli N; Pond SM
    Life Sci; 1996; 59(17):1473-82. PubMed ID: 8890926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term treatment with the tetrahydropyridine analog (HPTP) of haloperidol influences dopamine ligand binding in baboon brain. An [123I]iodobenzamide (IBZM) SPECT study.
    Van der Schyf CJ; Dormehl IC; Oliver DW; Hugo N; Keeve R; Müller-Gärtner HW; Pond SM; Castagnoli N
    Brain Res Mol Brain Res; 1996 Dec; 43(1-2):251-8. PubMed ID: 9037540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clinical and neuropathological abnormalities in baboons treated with HPTP, the tetrahydropyridine analog of haloperidol.
    Halliday GM; Pond SM; Cartwright H; McRitchie DA; Castagnoli N; Van der Schyf CJ
    Exp Neurol; 1999 Jul; 158(1):155-63. PubMed ID: 10448427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies on the metabolism of haloperidol (HP): the role of CYP3A in the production of the neurotoxic pyridinium metabolite HPP+ found in rat brain following ip administration of HP.
    Igarashi K; Kasuya F; Fukui M; Usuki E; Castagnoli N
    Life Sci; 1995 Nov; 57(26):2439-46. PubMed ID: 8847965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine receptor binding of 4-(4-chlorophenyl)-1-[4-(4-fluorophenyl)- 4-oxobutyl]-1,2,3,6-tetrahydropyridine (HPTP), an intermediate metabolite of haloperidol.
    Brand L; Oliver DW; van der Schyf CJ; Pond SM; Castagnoli N
    Life Sci; 1996; 59(10):815-20. PubMed ID: 8761315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic defects caused by treatment with the tetrahydropyridine analog of haloperidol (HPTP), in baboons.
    Mienie LJ; Bergh JJ; Van Staden E; Steyn SJ; Pond SM; Castagnoli N; Van der Schyf CJ
    Life Sci; 1997; 61(3):265-72. PubMed ID: 9217286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studies on the conversion of haloperidol and its tetrahydropyridine dehydration product to potentially neurotoxic pyridinium metabolites by human liver microsomes.
    Usuki E; Pearce R; Parkinson A; Castagnol N
    Chem Res Toxicol; 1996 Jun; 9(4):800-6. PubMed ID: 8831826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of haloperidol metabolites on neurotransmitter uptake and release: possible role in neurotoxicity and tardive dyskinesia.
    Wright AM; Bempong J; Kirby ML; Barlow RL; Bloomquist JR
    Brain Res; 1998 Mar; 788(1-2):215-22. PubMed ID: 9555021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic defects caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and by HPTP (the tetrahydropyridinyl analog of haloperidol), in rats.
    Petzer JP; Bergh JJ; Mienie LJ; Castagnoli N; Van der Schyf CJ
    Life Sci; 2000 Apr; 66(20):1949-54. PubMed ID: 10821119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-catalyzed bioactivation of cyclic tertiary amines to form potential neurotoxins.
    Castagnoli N; Castagnoli KP; Van der Schyf CJ; Usuki E; Igarashi K; Steyn SJ; Riker RR
    Pol J Pharmacol; 1999; 51(1):31-8. PubMed ID: 10389142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of haloperidol to pyridinium species in patients receiving high doses intravenously: is HPTP an intermediate?
    Avent KM; Riker RR; Fraser GL; Van der Schyf CJ; Usuki E; Pond SM
    Life Sci; 1997; 61(24):2383-90. PubMed ID: 9399630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic studies on haloperidol and its tetrahydropyridine analog in C57BL/6 mice.
    Van der Schyf CJ; Castagnoli K; Usuki E; Fouda HG; Rimoldi JM; Castagnoli N
    Chem Res Toxicol; 1994; 7(3):281-5. PubMed ID: 8075357
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolism of haloperidol and its tetrahydropyridine dehydration product HPTP.
    Usuki E; Van der Schyf CJ; Castagnoli N
    Drug Metab Rev; 1998 Nov; 30(4):809-26. PubMed ID: 9844810
    [No Abstract]   [Full Text] [Related]  

  • 16. Electron spin resonance spectroscopy reveals alpha-phenyl-N-tert-butylnitrone spin-traps free radicals in rat striatum and prevents haloperidol-induced vacuous chewing movements in the rat model of human tardive dyskinesia.
    Rogoza RM; Fairfax DF; Henry P; N-Marandi S; Khan RF; Gupta SK; Mishra RK
    Synapse; 2004 Dec; 54(3):156-63. PubMed ID: 15452862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia.
    Bishnoi M; Chopra K; Kulkarni SK
    Prog Neuropsychopharmacol Biol Psychiatry; 2008 Aug; 32(6):1473-8. PubMed ID: 18554768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a new functional target of haloperidol metabolite: implications for a receptor-independent role of 3-(4-fluorobenzoyl) propionic acid.
    Kim HS; Song M; Yumkham S; Choi JH; Lee T; Kwon J; Lee SJ; Kim JI; Lee KW; Han PL; Shin SW; Baik JH; Kim YS; Ryu SH; Suh PG
    J Neurochem; 2006 Oct; 99(2):458-69. PubMed ID: 17029599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deficient striatal adaptation in aminergic and glutamatergic neurotransmission is associated with tardive dyskinesia in non-human primates exposed to antipsychotic drugs.
    Lévesque C; Hernandez G; Mahmoudi S; Calon F; Gasparini F; Gomez-Mancilla B; Blanchet PJ; Lévesque D
    Neuroscience; 2017 Oct; 361():43-57. PubMed ID: 28790021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chirality of reduced haloperidol in humans.
    Eyles DW; McGrath JJ; Stedman TJ; Pond SM
    Eur Neuropsychopharmacol; 1998 May; 8(2):127-9. PubMed ID: 9619691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.