BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 10462498)

  • 1. Differential utilization of cyclic ADP-ribose pathway by chemokines to induce the mobilization of intracellular calcium in NK cells.
    Inngjerdingen M; Al-Aoukaty A; Damaj B; Maghazachi AA
    Biochem Biophys Res Commun; 1999 Aug; 262(2):467-72. PubMed ID: 10462498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose.
    Guse AH; da Silva CP; Berg I; Skapenko AL; Weber K; Heyer P; Hohenegger M; Ashamu GA; Schulze-Koops H; Potter BV; Mayr GW
    Nature; 1999 Mar; 398(6722):70-3. PubMed ID: 10078531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanisms of mobilization of intracellular stored calcium].
    Li HW; Wang X; Han QD
    Sheng Li Ke Xue Jin Zhan; 1995 Jul; 26(3):209-12. PubMed ID: 8584885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential effect of glycolytic intermediaries upon cyclic ADP-ribose-, inositol 1',4',5'-trisphosphate-, and nicotinate adenine dinucleotide phosphate-induced Ca(2+) release systems.
    Chini EN; Dousa TP
    Arch Biochem Biophys; 1999 Oct; 370(2):294-9. PubMed ID: 10510288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplification and propagation of pacemaker Ca2+ signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells.
    Kunerth S; Langhorst MF; Schwarzmann N; Gu X; Huang L; Yang Z; Zhang L; Mills SJ; Zhang LH; Potter BV; Guse AH
    J Cell Sci; 2004 Apr; 117(Pt 10):2141-9. PubMed ID: 15054112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the heterotrimeric G proteins in stromal-derived factor-1alpha-induced natural killer cell chemotaxis and calcium mobilization.
    Maghazachi AA
    Biochem Biophys Res Commun; 1997 Jul; 236(2):270-4. PubMed ID: 9240423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. cADP-ribose potentiates cytosolic Ca2+ elevation and Ca2+ entry via L-type voltage-activated Ca2+ channels in NG108-15 neuronal cells.
    Hashii M; Minabe Y; Higashida H
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):207-15. PubMed ID: 10620496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobilization of Ca2+ stores in individual pancreatic beta-cells permeabilized or not with digitonin or alpha-toxin.
    Tengholm A; Hellman B; Gylfe E
    Cell Calcium; 2000 Jan; 27(1):43-51. PubMed ID: 10726210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of inositol trisphosphate-induced calcium release by cyclic ADP-ribose in A7r5 smooth-muscle cells and in 16HBE14o- bronchial mucosal cells.
    Missiaen L; Parys JB; De Smedt H; Sienaert I; Sipma H; Vanlingen S; Maes K; Kunzelmann K; Casteels R
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):489-95. PubMed ID: 9445374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NAADP induces Ca2+ oscillations via a two-pool mechanism by priming IP3- and cADPR-sensitive Ca2+ stores.
    Churchill GC; Galione A
    EMBO J; 2001 Jun; 20(11):2666-71. PubMed ID: 11387201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potentiation of depolarization-induced calcium release from skeletal muscle triads by cyclic ADP-ribose and inositol 1,4,5-trisphosphate.
    Yamaguchi N; Kasai M
    Biochem Biophys Res Commun; 1997 Nov; 240(3):772-7. PubMed ID: 9398643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-induced calcium release in neurosecretory insect neurons: fast and slow responses.
    Messutat S; Heine M; Wicher D
    Cell Calcium; 2001 Sep; 30(3):199-211. PubMed ID: 11508999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Mobilization of intracellular calcium: how to take another path].
    Gimmel'brant AA
    Biokhimiia; 1994 May; 59(5):748-9. PubMed ID: 7913836
    [No Abstract]   [Full Text] [Related]  

  • 14. Role of two series of Ca2+ oscillations in activation of ascidian eggs.
    Yoshida M; Sensui N; Inoue T; Morisawa M; Mikoshiba K
    Dev Biol; 1998 Nov; 203(1):122-33. PubMed ID: 9806778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FK506 induces biphasic Ca2+ release from microsomal vesicles of rat pancreatic acinar cells.
    Ozawa T
    Int J Mol Med; 2006 Jul; 18(1):187-91. PubMed ID: 16786171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonist-stimulated cyclic ADP ribose. Endogenous modulator of Ca(2+)-induced Ca2+ release in intestinal longitudinal muscle.
    Kuemmerle JF; Makhlouf GM
    J Biol Chem; 1995 Oct; 270(43):25488-94. PubMed ID: 7592718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ waves require sequential activation of inositol trisphosphate receptors and ryanodine receptors in pancreatic acini.
    Leite MF; Burgstahler AD; Nathanson MH
    Gastroenterology; 2002 Feb; 122(2):415-27. PubMed ID: 11832456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2+-induced Ca2+ release by activation of inositol 1,4,5-trisphosphate receptors in primary pancreatic beta-cells.
    Dyachok O; Tufveson G; Gylfe E
    Cell Calcium; 2004 Jul; 36(1):1-9. PubMed ID: 15126051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ryanodine receptor subtype 2 encodes Ca2+ oscillations activated by acetylcholine via the M2 muscarinic receptor/cADP-ribose signalling pathway in duodenum myocytes.
    Fritz N; Macrez N; Mironneau J; Jeyakumar LH; Fleischer S; Morel JL
    J Cell Sci; 2005 May; 118(Pt 10):2261-70. PubMed ID: 15870112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium.
    Rudack C; Steinhoff M; Mooren F; Buddenkotte J; Becker K; von Eiff C; Sachse F
    Clin Exp Allergy; 2007 Jul; 37(7):1009-22. PubMed ID: 17581194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.