These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 10463495)

  • 1. The effects of pulsatile versus nonpulsatile perfusion on blood viscoelasticity before and after deep hypothermic circulatory arrest in a neonatal piglet model.
    Undar A; Henderson N; Thurston GB; Masai T; Beyer EA; Frazier OH; Fraser CD
    Artif Organs; 1999 Aug; 23(8):717-21. PubMed ID: 10463495
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of cardiopulmonary bypass and deep hypothermic circulatory arrest on blood viscoelasticity and cerebral blood flow in a neonatal piglet model.
    Undar A; Vaughn WK; Calhoon JH
    Perfusion; 2000 Mar; 15(2):121-8. PubMed ID: 10789566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise quantification of pulsatility is a necessity for direct comparisons of six different pediatric heart-lung machines in a neonatal CPB model.
    Undar A; Eichstaedt HC; Masai T; Bigley JE; Kunselman AR
    ASAIO J; 2005; 51(5):600-3. PubMed ID: 16322724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet model.
    Undar A; Masai T; Yang SQ; Goddard-Finegold J; Frazier OH; Fraser CD
    Ann Thorac Surg; 1999 Oct; 68(4):1336-42; discussion 1342-3. PubMed ID: 10543503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global and regional cerebral blood flow in neonatal piglets undergoing pulsatile cardiopulmonary bypass with continuous perfusion at 25 degrees C and circulatory arrest at 18 degrees C.
    Undar A; Masai T; Yang SQ; Eichstaedt HC; McGarry MC; Vaughn WK; Goddard-Finegold J; Fraser CD
    Perfusion; 2001 Nov; 16(6):503-10. PubMed ID: 11761090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulsatile and nonpulsatile flows can be quantified in terms of energy equivalent pressure during cardiopulmonary bypass for direct comparisons.
    Undar A; Masai T; Frazier OH; Fraser CD
    ASAIO J; 1999; 45(6):610-4. PubMed ID: 10593694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pediatric physiologic pulsatile pump enhances cerebral and renal blood flow during and after cardiopulmonary bypass.
    Undar A; Masai T; Beyer EA; Goddard-Finegold J; McGarry MC; Fraser CD
    Artif Organs; 2002 Nov; 26(11):919-23. PubMed ID: 12406143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The type of aortic cannula and membrane oxygenator affect the pulsatile waveform morphology produced by a neonate-infant cardiopulmonary bypass system in vivo.
    Undar A; Lodge AJ; Daggett CW; Runge TM; Ungerleider RM; Calhoon JH
    Artif Organs; 1998 Aug; 22(8):681-6. PubMed ID: 9702320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pulsatile perfusion improves regional myocardial blood flow during and after hypothermic cardiopulmonary bypass in a neonatal piglet model.
    Undar A; Masai T; Yang SQ; Eichstaedt HC; McGarry MC; Vaughn WK; Fraser CD
    ASAIO J; 2002; 48(1):90-5. PubMed ID: 11814104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a physiologic pulsatile pump system for neonate-infant cardiopulmonary bypass support.
    Undar A; Masai T; Inman R; Beyer EA; Mueller MA; McGarry MC; Frazier OH; Fraser CD
    ASAIO J; 1999; 45(1):53-8. PubMed ID: 9952008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antegrade selective cerebral perfusion combined with deep hypothermic circulatory arrest on cerebral circulation: comparison between pulsatile and nonpulsatile blood flows.
    Soeda M
    Ann Thorac Cardiovasc Surg; 2007 Apr; 13(2):93-101. PubMed ID: 17505416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulsatile perfusion versus conventional high-flow nonpulsatile perfusion for rapid core cooling and rewarming of infants for circulatory arrest in cardiac operation.
    Williams GD; Seifen AB; Lawson NW; Norton JB; Readinger RI; Dungan TW; Callaway JK; Campbell GS
    J Thorac Cardiovasc Surg; 1979 Nov; 78(5):667-77. PubMed ID: 491721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring regional cerebral oxygen saturation using near-infrared spectroscopy during pulsatile hypothermic cardiopulmonary bypass in a neonatal piglet model.
    Undar A; Eichstaedt HC; Frazier OH; Fraser CD
    ASAIO J; 2000; 46(1):103-6. PubMed ID: 10667726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-controlled cardiopulmonary bypass increases jugular venous oxygen saturation during rewarming.
    Mutch WA; Lefevre GR; Thiessen DB; Girling LG; Warrian RK
    Ann Thorac Surg; 1998 Jan; 65(1):59-65. PubMed ID: 9456096
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile versus nonpulsatile flow. No difference in cerebral blood flow or metabolism during normothermic cardiopulmonary bypass in rabbits.
    Hindman BJ; Dexter F; Smith T; Cutkomp J
    Anesthesiology; 1995 Jan; 82(1):241-50. PubMed ID: 7832307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of hypothermic cardiopulmonary bypass on blood viscoelasticity in pediatric cardiac patients.
    Undar A
    ASAIO J; 2005; 51(5):522-4. PubMed ID: 16322710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of mild hypothermic cardiopulmonary bypass on blood viscoelasticity in coronary artery bypass grafting patients.
    Undar A; Vaughn WK
    Artif Organs; 2002 Nov; 26(11):964-6. PubMed ID: 12406152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carotid artery Doppler flow pattern after deep hypothermic circulatory arrest in neonatal piglets.
    Tirilomis T; Malliarou S; Coskun KO; Schoendube FA
    Artif Organs; 2014 Jan; 38(1):91-5. PubMed ID: 24206193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beneficial effect of balloon-induced pulsatility on brain oxygenation in hypothermic cardiopulmonary bypass.
    Hashimoto K; Onoguchi K; Takakura H; Sasaki T; Hachiya T; Oshiumi M; Takeuchi S
    J Cardiovasc Surg (Torino); 2001 Oct; 42(5):587-93. PubMed ID: 11562581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher hematocrit improves liver blood flow and metabolism during cardiopulmonary bypass in piglets.
    Nollert G; Sperling J; Sakamoto T; Jaeger BR; Jonas RA
    Thorac Cardiovasc Surg; 2001 Aug; 49(4):226-30. PubMed ID: 11505319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.