These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10463497)

  • 1. Augmentative effect of pulsatility on the wall shear stress in tube flow.
    Nakata M; Tatsumi E; Tsukiya T; Taenaka Y; Nishimura T; Nishinaka T; Takano H; Masuzawa T; Ohba K
    Artif Organs; 1999 Aug; 23(8):727-31. PubMed ID: 10463497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a System for Measuring Wall Shear Stress in Blood Vessels using Magnetic Resonance Imaging and Computational Fluid Dynamics.
    Yoshida K; Nagao T; Okada K; Miyazaki S; Yang X; Yamazaki Y; Murase K
    Igaku Butsuri; 2008; 27(3):136-49. PubMed ID: 18367824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrocardiogram-synchronized rotational speed change mode in rotary pumps could improve pulsatility.
    Ando M; Nishimura T; Takewa Y; Yamazaki K; Kyo S; Ono M; Tsukiya T; Mizuno T; Taenaka Y; Tatsumi E
    Artif Organs; 2011 Oct; 35(10):941-7. PubMed ID: 21615427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive evaluation of wall shear stress on retinal microcirculation in humans.
    Nagaoka T; Yoshida A
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1113-9. PubMed ID: 16505049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatility Index as a Diagnostic Parameter of Reciprocating Wall Shear Stress Parameters in Physiological Pulsating Waveforms.
    Avrahami I; Kersh D; Liberzon A
    PLoS One; 2016; 11(11):e0166426. PubMed ID: 27893801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous and Pulsatile Pediatric Ventricular Assist Device Hemodynamics with a Viscoelastic Blood Model.
    Good BC; Deutsch S; Manning KB
    Cardiovasc Eng Technol; 2016 Mar; 7(1):23-43. PubMed ID: 26643646
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.
    Ramiar A; Larimi MM; Ranjbar AA
    Acta Bioeng Biomech; 2017; 19(3):27-41. PubMed ID: 29205216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical evaluation of pulsatile flow mode of Terumo Capiox centrifugal pump.
    Nishida H; Uesugi H; Nishinaka T; Uwabe K; Aomi S; Endo M; Koyanagi H; Oshiyama H; Nogawa A; Akutsu T
    Artif Organs; 1997 Jul; 21(7):816-21. PubMed ID: 9212965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of pulsatile wall shear stress in compliant arteries: numerical model, validation and experimental data.
    Salvucci FP; Perazzo CA; Barra JG; Armentano RL
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2847-50. PubMed ID: 19964274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical investigation of the non-Newtonian pulsatile blood flow in a bifurcation model with a non-planar branch.
    Chen J; Lu XY
    J Biomech; 2006; 39(5):818-32. PubMed ID: 16488221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery.
    Qiu Y; Tarbell JM
    J Biomech Eng; 2000 Feb; 122(1):77-85. PubMed ID: 10790833
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of systolic and diastolic arterial wall shear stress in the ascending aorta.
    Efstathopoulos EP; Patatoukas G; Pantos I; Benekos O; Katritsis D; Kelekis NL
    Phys Med; 2008 Dec; 24(4):196-203. PubMed ID: 18343178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
    Avari H; Savory E; Rogers KA
    Cardiovasc Eng Technol; 2016 Mar; 7(1):44-57. PubMed ID: 26621672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The frequency response of electrochemical wall shear probes in pulsatile flow.
    Talbot L; Steinert JJ
    J Biomech Eng; 1987 Feb; 109(1):60-4. PubMed ID: 3560881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The study on hemodynamic effect of varied support models of BJUT-II VAD on coronary artery: a primary CFD study.
    Zhang Q; Gao B; Gu K; Chang Y; Xu J
    ASAIO J; 2014; 60(6):643-51. PubMed ID: 25373559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Pulsatility and Flow Rates on Hemodynamic Energy Transmission in an Adult Extracorporeal Life Support System.
    Wolfe R; Strother A; Wang S; Kunselman AR; Ündar A
    Artif Organs; 2015 Jul; 39(7):E127-37. PubMed ID: 25894993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of pulsatile and nonpulsatile blood flow effects in different degrees of stenotic vasculature.
    Jung JS; Son KH; Ahn CB; Lee JJ; Son HS; Sun K
    Artif Organs; 2011 Nov; 35(11):1118-23. PubMed ID: 22023148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of cardiac flow rate on turbulent shear stress from a prosthetic heart valve.
    Schwarz AC; Tiederman WG; Phillips WM
    J Biomech Eng; 1988 May; 110(2):123-8. PubMed ID: 2967905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.