BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10463791)

  • 1. Plasticity in the tectum of Xenopus laevis: binocular maps.
    Udin SB; Grant S
    Prog Neurobiol; 1999 Oct; 59(2):81-106. PubMed ID: 10463791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of visual experience in the formation of binocular projections in frogs.
    Udin SB
    Cell Mol Neurobiol; 1985 Jun; 5(1-2):85-102. PubMed ID: 3896495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of the nucleus isthmi in Xenopus, II: Branching patterns of contralaterally projecting isthmotectal axons during maturation of binocular maps.
    Udin SB
    Vis Neurosci; 1989; 2(2):153-63. PubMed ID: 2562146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Binocular maps in Xenopus tectum: Visual experience and the development of isthmotectal topography.
    Udin SB
    Dev Neurobiol; 2012 Apr; 72(4):564-74. PubMed ID: 21674812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasticity in the ipsilateral visuotectal projection persists after lesions of one nucleus isthmi in Xenopus.
    Udin SB
    Exp Brain Res; 1990; 79(2):338-44. PubMed ID: 2323380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experience-dependent mechanism of binocular map plasticity in Xenopus: incongruent connections are masked by retinal input.
    Brickley SG; Keating MJ; Grant S
    Neurosci Lett; 1994 Nov; 182(1):13-6. PubMed ID: 7891877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronizing retinal activity in both eyes disrupts binocular map development in the optic tectum.
    Brickley SG; Dawes EA; Keating MJ; Grant S
    J Neurosci; 1998 Feb; 18(4):1491-504. PubMed ID: 9454857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceleration by NMDA treatment of visually induced map reorganization in juvenile Xenopus after larval eye rotation.
    Bandarchi J; Scherer WJ; Udin SB
    J Neurobiol; 1994 Apr; 25(4):451-60. PubMed ID: 8077969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chronic melatonin and binocular plasticity in Xenopus frogs.
    Udin SB
    Gen Comp Endocrinol; 2005 Jul; 142(3):274-9. PubMed ID: 15935153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isthmotectal axons make ectopic synapses in monocular regions of the tectum in developing Xenopus laevis frogs.
    Udin SB; Fisher MD; Norden JJ
    J Comp Neurol; 1992 Aug; 322(4):461-70. PubMed ID: 1401245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Latency and temporal overlap of visually elicited contralateral and ipsilateral firing in Xenopus tectum during and after the critical period.
    Scherer WJ; Udin SB
    Brain Res Dev Brain Res; 1991 Jan; 58(1):129-32. PubMed ID: 1826641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic effects of NMDA and APV on tectal output in Xenopus laevis.
    Scherer WJ; Udin SB
    Vis Neurosci; 1991 Feb; 6(2):185-92. PubMed ID: 1675586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study.
    Titmus MJ; Tsai HJ; Lima R; Udin SB
    Neuroscience; 1999; 91(2):753-69. PubMed ID: 10366031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The representation of the ipsilateral eye in nucleus isthmi of the leopard frog, Rana pipiens.
    Winkowski DE; Gruberg ER
    Vis Neurosci; 2002; 19(5):669-79. PubMed ID: 12507333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity of binocular visual connections in the frog, Xenopus laevis: reversibility of effects of early visual deprivation.
    Keating MJ; Dawes EA; Grant S
    Exp Brain Res; 1992; 90(1):121-8. PubMed ID: 1521600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration of the plasticity of binocular maps by NMDA after the critical period in Xenopus.
    Udin SB; Scherer WJ
    Science; 1990 Aug; 249(4969):669-72. PubMed ID: 2166343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenopus exhibits seasonal variation in retinotectal latency but not tecto-isthmo-tectal latency.
    Scherer WJ; Udin SB
    J Comp Physiol A; 1992 Sep; 171(2):207-12. PubMed ID: 1432856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. N-methyl-D-aspartate antagonists prevent interaction of binocular maps in Xenopus tectum.
    Scherer WJ; Udin SB
    J Neurosci; 1989 Nov; 9(11):3837-43. PubMed ID: 2573697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isthmotectal axons maintain normal arbor size but fail to support normal branch numbers in dark-reared Xenopus laevis.
    Udin SB
    J Comp Neurol; 2008 Apr; 507(4):1559-70. PubMed ID: 18219666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum.
    Udin SB; Fisher MD
    J Comp Neurol; 1985 Feb; 232(1):25-35. PubMed ID: 3973081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.