These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 10464178)
1. Genetic susceptibility or resistance to autoimmune encephalomyelitis in MHC congenic mice is associated with differential production of pro- and anti-inflammatory cytokines. Maron R; Hancock WW; Slavin A; Hattori M; Kuchroo V; Weiner HL Int Immunol; 1999 Sep; 11(9):1573-80. PubMed ID: 10464178 [TBL] [Abstract][Full Text] [Related]
2. Dissimilar background genes control susceptibility to autoimmune disease in the context of different MHC haplotypes: NOD.H-2(s) congenic mice are relatively resistant to both experimental autoimmune encephalomyelitis and type I diabetes. Greve B; Reddy J; Waldner HP; Sobel RA; Kuchroo VK Eur J Immunol; 2004 Jul; 34(7):1828-38. PubMed ID: 15214031 [TBL] [Abstract][Full Text] [Related]
3. T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis. Zheng H; Zhang H; Liu F; Qi Y; Jiang H Immunol Lett; 2014; 157(1-2):38-44. PubMed ID: 24220208 [TBL] [Abstract][Full Text] [Related]
4. Congenic mapping confirms a locus on rat chromosome 10 conferring strong protection against myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. Jagodic M; Kornek B; Weissert R; Lassmann H; Olsson T; Dahlman I Immunogenetics; 2001 Jul; 53(5):410-5. PubMed ID: 11486278 [TBL] [Abstract][Full Text] [Related]
5. Inhibitory role of CD19 in the progression of experimental autoimmune encephalomyelitis by regulating cytokine response. Matsushita T; Fujimoto M; Hasegawa M; Komura K; Takehara K; Tedder TF; Sato S Am J Pathol; 2006 Mar; 168(3):812-21. PubMed ID: 16507897 [TBL] [Abstract][Full Text] [Related]
6. MHC class II-regulated central nervous system autoaggression and T cell responses in peripheral lymphoid tissues are dissociated in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. Weissert R; de Graaf KL; Storch MK; Barth S; Linington C; Lassmann H; Olsson T J Immunol; 2001 Jun; 166(12):7588-99. PubMed ID: 11390515 [TBL] [Abstract][Full Text] [Related]
8. Mucosal administration of IL-10 enhances oral tolerance in autoimmune encephalomyelitis and diabetes. Slavin AJ; Maron R; Weiner HL Int Immunol; 2001 Jun; 13(6):825-33. PubMed ID: 11369711 [TBL] [Abstract][Full Text] [Related]
9. Disparate MHC class II haplotypes in myelin oligodendrocyte glycoprotein- and myelin basic protein-induced experimental autoimmune encephalomyelitis. Muhallab S; Dahlman I; Wallström E J Neuroimmunol; 2005 Apr; 161(1-2):155-61. PubMed ID: 15748954 [TBL] [Abstract][Full Text] [Related]
10. Loss of IFN-gamma enables the expansion of autoreactive CD4+ T cells to induce experimental autoimmune encephalomyelitis by a nonencephalitogenic myelin variant antigen. Sabatino JJ; Shires J; Altman JD; Ford ML; Evavold BD J Immunol; 2008 Apr; 180(7):4451-7. PubMed ID: 18354166 [TBL] [Abstract][Full Text] [Related]
11. Chronological changes of CD4(+) and CD8(+) T cell subsets in the experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Sonobe Y; Jin S; Wang J; Kawanokuchi J; Takeuchi H; Mizuno T; Suzumura A Tohoku J Exp Med; 2007 Dec; 213(4):329-39. PubMed ID: 18075237 [TBL] [Abstract][Full Text] [Related]
12. Genetic analysis of inflammation, cytokine mRNA expression and disease course of relapsing experimental autoimmune encephalomyelitis in DA rats. Lorentzen JC; Andersson M; Issazadeh S; Dahlman I; Luthman H; Weissert R; Olsson T J Neuroimmunol; 1997 Dec; 80(1-2):31-7. PubMed ID: 9413257 [TBL] [Abstract][Full Text] [Related]
13. High interleukin-10 expression within the central nervous system may be important for initiation of recovery of Dark Agouti rats from experimental autoimmune encephalomyelitis. Blaževski J; Petković F; Momčilović M; Jevtic B; Miljković D; Mostarica Stojković M Immunobiology; 2013 Sep; 218(9):1192-9. PubMed ID: 23664544 [TBL] [Abstract][Full Text] [Related]
14. Essential role of TGF-beta in the natural resistance to experimental allergic encephalomyelitis in rats. Cautain B; Damoiseaux J; Bernard I; van Straaten H; van Breda Vriesman P; Boneu B; Druet P; Saoudi A Eur J Immunol; 2001 Apr; 31(4):1132-40. PubMed ID: 11298338 [TBL] [Abstract][Full Text] [Related]
15. MOG extracellular domain (p1-125) triggers elevated frequency of CXCR3+ CD4+ Th1 cells in the CNS of mice and induces greater incidence of severe EAE. Mony JT; Khorooshi R; Owens T Mult Scler; 2014 Sep; 20(10):1312-21. PubMed ID: 24552747 [TBL] [Abstract][Full Text] [Related]
16. IL-10 mediates resistance to adoptive transfer experimental autoimmune encephalomyelitis in MyD88(-/-) mice. Cohen SJ; Cohen IR; Nussbaum G J Immunol; 2010 Jan; 184(1):212-21. PubMed ID: 19949074 [TBL] [Abstract][Full Text] [Related]
17. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. Gran B; Zhang GX; Yu S; Li J; Chen XH; Ventura ES; Kamoun M; Rostami A J Immunol; 2002 Dec; 169(12):7104-10. PubMed ID: 12471147 [TBL] [Abstract][Full Text] [Related]