BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 10464203)

  • 1. The 17-gene ethanolamine (eut) operon of Salmonella typhimurium encodes five homologues of carboxysome shell proteins.
    Kofoid E; Rappleye C; Stojiljkovic I; Roth J
    J Bacteriol; 1999 Sep; 181(17):5317-29. PubMed ID: 10464203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rationale for autoinduction of a transcriptional activator: ethanolamine ammonia-lyase (EutBC) and the operon activator (EutR) compete for adenosyl-cobalamin in Salmonella typhimurium.
    Sheppard DE; Roth JR
    J Bacteriol; 1994 Mar; 176(5):1287-96. PubMed ID: 8113167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions required for vitamin B12-dependent ethanolamine utilization in Salmonella typhimurium.
    Roof DM; Roth JR
    J Bacteriol; 1989 Jun; 171(6):3316-23. PubMed ID: 2656649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autogenous regulation of ethanolamine utilization by a transcriptional activator of the eut operon in Salmonella typhimurium.
    Roof DM; Roth JR
    J Bacteriol; 1992 Oct; 174(20):6634-43. PubMed ID: 1328159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ethanolamine utilization in Salmonella typhimurium.
    Roof DM; Roth JR
    J Bacteriol; 1988 Sep; 170(9):3855-63. PubMed ID: 3045078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethanolamine utilization in Salmonella typhimurium: nucleotide sequence, protein expression, and mutational analysis of the cchA cchB eutE eutJ eutG eutH gene cluster.
    Stojiljkovic I; Bäumler AJ; Heffron F
    J Bacteriol; 1995 Mar; 177(5):1357-66. PubMed ID: 7868611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that a B12-adenosyl transferase is encoded within the ethanolamine operon of Salmonella enterica.
    Sheppard DE; Penrod JT; Bobik T; Kofoid E; Roth JR
    J Bacteriol; 2004 Nov; 186(22):7635-44. PubMed ID: 15516577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular characterization of eutF mutants of Salmonella typhimurium LT2 identifies eutF lesions as partial-loss-of-function tonB alleles.
    Thomas MG; O'Toole GA; Escalante-Semerena JC
    J Bacteriol; 1999 Jan; 181(2):368-74. PubMed ID: 9882647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence of Rhodococcus gene cluster encoding the subunits of ethanolamine ammonia-lyase and an APC-like permease.
    De Mot R; Nagy I; Schoofs G; Vanderleyden J
    Can J Microbiol; 1994 May; 40(5):403-7. PubMed ID: 8069783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimal functions and physiological conditions required for growth of salmonella enterica on ethanolamine in the absence of the metabolosome.
    Brinsmade SR; Paldon T; Escalante-Semerena JC
    J Bacteriol; 2005 Dec; 187(23):8039-46. PubMed ID: 16291677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control region of the pdu/cob regulon in Salmonella typhimurium.
    Chen P; Andersson DI; Roth JR
    J Bacteriol; 1994 Sep; 176(17):5474-82. PubMed ID: 8071226
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, sequencing, and expression of the genes encoding the adenosylcobalamin-dependent ethanolamine ammonia-lyase of Salmonella typhimurium.
    Faust LR; Connor JA; Roof DM; Hoch JA; Babior BM
    J Biol Chem; 1990 Jul; 265(21):12462-6. PubMed ID: 2197274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alternative electron acceptor tetrathionate supports B12-dependent anaerobic growth of Salmonella enterica serovar typhimurium on ethanolamine or 1,2-propanediol.
    Price-Carter M; Tingey J; Bobik TA; Roth JR
    J Bacteriol; 2001 Apr; 183(8):2463-75. PubMed ID: 11274105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cobalamin (coenzyme B12) biosynthetic genes of Escherichia coli.
    Lawrence JG; Roth JR
    J Bacteriol; 1995 Nov; 177(22):6371-80. PubMed ID: 7592411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Global regulation by CsrA in Salmonella typhimurium.
    Lawhon SD; Frye JG; Suyemoto M; Porwollik S; McClelland M; Altier C
    Mol Microbiol; 2003 Jun; 48(6):1633-45. PubMed ID: 12791144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conserving a volatile metabolite: a role for carboxysome-like organelles in Salmonella enterica.
    Penrod JT; Roth JR
    J Bacteriol; 2006 Apr; 188(8):2865-74. PubMed ID: 16585748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acinetobacter baumannii Catabolizes Ethanolamine in the Absence of a Metabolosome and Converts Cobinamide into Adenosylated Cobamides.
    Villa EA; Escalante-Semerena JC
    mBio; 2022 Aug; 13(4):e0179322. PubMed ID: 35880884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Salmonella enterica, Ethanolamine Utilization Is Repressed by 1,2-Propanediol To Prevent Detrimental Mixing of Components of Two Different Bacterial Microcompartments.
    Sturms R; Streauslin NA; Cheng S; Bobik TA
    J Bacteriol; 2015 Jul; 197(14):2412-21. PubMed ID: 25962913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic characterization of the pdu operon: use of 1,2-propanediol in Salmonella typhimurium.
    Walter D; Ailion M; Roth J
    J Bacteriol; 1997 Feb; 179(4):1013-22. PubMed ID: 9023178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and sequence analysis of lpfABCDE, a putative fimbrial operon of Salmonella typhimurium.
    Bäumler AJ; Heffron F
    J Bacteriol; 1995 Apr; 177(8):2087-97. PubMed ID: 7721701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.