These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 10464367)

  • 21. Cortical and thalamic axon pathfinding defects in Tbr1, Gbx2, and Pax6 mutant mice: evidence that cortical and thalamic axons interact and guide each other.
    Hevner RF; Miyashita-Lin E; Rubenstein JL
    J Comp Neurol; 2002 May; 447(1):8-17. PubMed ID: 11967891
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thalamo-telencephalic connections: new insights on the cortical organization in reptiles.
    Guirado S; Dávila JC
    Brain Res Bull; 2002 Feb-Mar 1; 57(3-4):451-4. PubMed ID: 11923009
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target.
    Richards LJ; Koester SE; Tuttle R; O'Leary DD
    J Neurosci; 1997 Apr; 17(7):2445-58. PubMed ID: 9065505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Normal development of embryonic thalamocortical connectivity in the absence of evoked synaptic activity.
    Molnár Z; López-Bendito G; Small J; Partridge LD; Blakemore C; Wilson MC
    J Neurosci; 2002 Dec; 22(23):10313-23. PubMed ID: 12451131
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection.
    Braisted JE; Catalano SM; Stimac R; Kennedy TE; Tessier-Lavigne M; Shatz CJ; O'Leary DD
    J Neurosci; 2000 Aug; 20(15):5792-801. PubMed ID: 10908620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spinothalamic and spinohypothalamic tract neurons in the sacral spinal cord of rats. I. Locations of antidromically identified axons in the cervical cord and diencephalon.
    Katter JT; Dado RJ; Kostarczyk E; Giesler GJ
    J Neurophysiol; 1996 Jun; 75(6):2581-605. PubMed ID: 8793765
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The early development of thalamocortical and corticothalamic projections.
    Miller B; Chou L; Finlay BL
    J Comp Neurol; 1993 Sep; 335(1):16-41. PubMed ID: 8408772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of the rat thalamus: II. Time and site of origin and settling pattern of neurons derived from the anterior lobule of the thalamic neuroepithelium.
    Altman J; Bayer SA
    J Comp Neurol; 1988 Sep; 275(3):378-405. PubMed ID: 3225344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Subplate neurons pioneer the first axon pathway from the cerebral cortex.
    McConnell SK; Ghosh A; Shatz CJ
    Science; 1989 Sep; 245(4921):978-82. PubMed ID: 2475909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Choreography of early thalamocortical development.
    Molnár Z; Higashi S; López-Bendito G
    Cereb Cortex; 2003 Jun; 13(6):661-9. PubMed ID: 12764042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of Emx2 in the development of the reciprocal connectivity between cortex and thalamus.
    López-Bendito G; Chan CH; Mallamaci A; Parnavelas J; Molnár Z
    J Comp Neurol; 2002 Sep; 451(2):153-69. PubMed ID: 12209834
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thalamic afferent and efferent connectivity to cerebral cortical areas with direct projections to identified subgroups of trigeminal premotoneurons in the rat.
    Haque T; Yamamoto S; Masuda Y; Kato T; Sato F; Uchino K; Oka A; Nakamura M; Takeda R; Ono T; Kogo M; Yoshida A
    Brain Res; 2010 Jul; 1346():69-82. PubMed ID: 20493176
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse.
    Ozaki HS; Wahlsten D
    J Comp Neurol; 1998 Oct; 400(2):197-206. PubMed ID: 9766399
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development and evolution of thalamocortical interactions.
    Molnár Z
    Eur J Morphol; 2000 Dec; 38(5):313-20. PubMed ID: 11151044
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography.
    Ray JP; Price JL
    J Comp Neurol; 1992 Sep; 323(2):167-97. PubMed ID: 1401255
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pathfinding and target selection by developing geniculocortical axons.
    Ghosh A; Shatz CJ
    J Neurosci; 1992 Jan; 12(1):39-55. PubMed ID: 1729444
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subplate pioneers and the formation of descending connections from cerebral cortex.
    McConnell SK; Ghosh A; Shatz CJ
    J Neurosci; 1994 Apr; 14(4):1892-907. PubMed ID: 7512631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cortical, thalamic, and amygdaloid projections of rat temporal cortex.
    Shi CJ; Cassell MD
    J Comp Neurol; 1997 Jun; 382(2):153-75. PubMed ID: 9183686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immunohistochemical localization of neurocan and L1 in the formation of thalamocortical pathway of developing rats.
    Fukuda T; Kawano H; Ohyama K; Li HP; Takeda Y; Oohira A; Kawamura K
    J Comp Neurol; 1997 Jun; 382(2):141-52. PubMed ID: 9183685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of glia and blood vessels in the internal capsule of rats.
    Earle KL; Mitrofanis J
    J Neurocytol; 1998 Feb; 27(2):127-39. PubMed ID: 9609403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.