These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 10464690)

  • 1. Velocity and wall shear stress patterns in the human right coronary artery.
    Kirpalani A; Park H; Butany J; Johnston KW; Ojha M
    J Biomech Eng; 1999 Aug; 121(4):370-5. PubMed ID: 10464690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pulsatile flow in the human left coronary artery bifurcation: average conditions.
    He X; Ku DN
    J Biomech Eng; 1996 Feb; 118(1):74-82. PubMed ID: 8833077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors influencing blood flow patterns in the human right coronary artery.
    Myers JG; Moore JA; Ojha M; Johnston KW; Ethier CR
    Ann Biomed Eng; 2001 Feb; 29(2):109-20. PubMed ID: 11284665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsteady and three-dimensional simulation of blood flow in the human aortic arch.
    Shahcheraghi N; Dwyer HA; Cheer AY; Barakat AI; Rutaganira T
    J Biomech Eng; 2002 Aug; 124(4):378-87. PubMed ID: 12188204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency dependence of dynamic curvature effects on flow through coronary arteries.
    Moore JE; Weydahl ES; Santamarina A
    J Biomech Eng; 2001 Apr; 123(2):129-33. PubMed ID: 11340873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress.
    Zarins CK; Giddens DP; Bharadvaj BK; Sottiurai VS; Mabon RF; Glagov S
    Circ Res; 1983 Oct; 53(4):502-14. PubMed ID: 6627609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational model of blood flow in the aorto-coronary bypass graft.
    Sankaranarayanan M; Chua LP; Ghista DN; Tan YS
    Biomed Eng Online; 2005 Mar; 4():14. PubMed ID: 15745458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A numerical study of flow in curved tubes simulating coronary arteries.
    Chang LJ; Tarbell JM
    J Biomech; 1988; 21(11):927-37. PubMed ID: 3253279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of wall shear stress in left coronary artery bifurcation for pulsatile flow using two-dimensional computational fluid dynamics.
    Smith S; Austin S; Wesson GD; Moore CA
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():871-4. PubMed ID: 17945604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The shear rate at the wall in a symmetrically branched tube simulating the aortic bifurcation.
    Walburn FJ; Stein PD
    Biorheology; 1982; 19(1/2):307-16. PubMed ID: 6212090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model.
    Weydahl ES; Moore JE
    J Biomech; 2001 Sep; 34(9):1189-96. PubMed ID: 11506789
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A numerical calculation of flow in a curved tube model of the left main coronary artery.
    Perktold K; Nerem RM; Peter RO
    J Biomech; 1991; 24(3-4):175-89. PubMed ID: 2055907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validated computation of physiologic flow in a realistic coronary artery branch.
    Perktold K; Hofer M; Rappitsch G; Loew M; Kuban BD; Friedman MH
    J Biomech; 1998 Mar; 31(3):217-28. PubMed ID: 9645536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of pulsatile flow in a compliant curved tube model of a coronary artery.
    Qiu Y; Tarbell JM
    J Biomech Eng; 2000 Feb; 122(1):77-85. PubMed ID: 10790833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of curvature and stenosis-like narrowing on wall shear stress in a coronary artery model with phasic flow.
    Nosovitsky VA; Ilegbusi OJ; Jiang J; Stone PH; Feldman CL
    Comput Biomed Res; 1997 Feb; 30(1):61-82. PubMed ID: 9134307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and phasic oscillation of non-Newtonian wall shear stress in human left coronary artery bifurcation: an insight to atherogenesis.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Coron Artery Dis; 2006 May; 17(4):351-8. PubMed ID: 16707958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large curvature effect on pulsatile entrance flow in a curved tube: model experiment simulating blood flow in an aortic arch.
    Naruse T; Tanishita K
    J Biomech Eng; 1996 May; 118(2):180-6. PubMed ID: 8738782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined effects of pulsatile flow and dynamic curvature on wall shear stress in a coronary artery bifurcation model.
    Pivkin IV; Richardson PD; Laidlaw DH; Karniadakis GE
    J Biomech; 2005 Jun; 38(6):1283-90. PubMed ID: 15863113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.