These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10464690)

  • 21. Intimal thickness is not associated with wall shear stress patterns in the human right coronary artery.
    Joshi AK; Leask RL; Myers JG; Ojha M; Butany J; Ethier CR
    Arterioscler Thromb Vasc Biol; 2004 Dec; 24(12):2408-13. PubMed ID: 15472129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of the effects of dynamic change in curvature and torsion on pulsatile flow in a helical tube.
    Selvarasu NK; Tafti DK
    J Biomech Eng; 2012 Jul; 134(7):. PubMed ID: 24763627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of branchings on blood flow in the system of human coronary arteries.
    Wiwatanapataphee B; Wu YH; Siriapisith T; Nuntadilok B
    Math Biosci Eng; 2012 Jan; 9(1):199-214. PubMed ID: 22229404
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Derivation of shear rates from near-wall LDA measurements under steady and pulsatile flow conditions.
    Fatemi RS; Rittgers SE
    J Biomech Eng; 1994 Aug; 116(3):361-8. PubMed ID: 7799640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Haemodynamic analysis of coronary artery bypass grafting in a non-linear deformable artery and Newtonian pulsatile blood flow.
    Kouhi E; Morsi YS; Masood SH
    Proc Inst Mech Eng H; 2008 Nov; 222(8):1273-87. PubMed ID: 19143420
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis.
    Feldman CL; Ilegbusi OJ; Hu Z; Nesto R; Waxman S; Stone PH
    Am Heart J; 2002 Jun; 143(6):931-9. PubMed ID: 12075241
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Computed numerical analysis of the biomechanical effects on coronary atherogenesis using human hemodynamic and dimensional variables.
    Lee BK; Kwon HM; Kim D; Yoon YW; Seo JK; Kim IJ; Roh HW; Suh SH; Yoo SS; Kim HS
    Yonsei Med J; 1998 Apr; 39(2):166-74. PubMed ID: 9587258
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of time varying curvature on species transport in coronary arteries.
    Kolandavel MK; Fruend ET; Ringgaard S; Walker PG
    Ann Biomed Eng; 2006 Dec; 34(12):1820-32. PubMed ID: 17051428
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of asymmetry in abdominal aortic aneurysms under physiologically realistic pulsatile flow conditions.
    Finol EA; Keyhani K; Amon CH
    J Biomech Eng; 2003 Apr; 125(2):207-17. PubMed ID: 12751282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of flow partition on wall shear in a cast of a human coronary artery.
    Bargeron CB; Deters OJ; Mark FF; Friedman MH
    Cardiovasc Res; 1988 May; 22(5):340-4. PubMed ID: 2973373
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes.
    Sharp MK; Thurston GB; Moore JE
    Biorheology; 1996; 33(3):185-208. PubMed ID: 8935179
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Requirements for mesh resolution in 3D computational hemodynamics.
    Prakash S; Ethier CR
    J Biomech Eng; 2001 Apr; 123(2):134-44. PubMed ID: 11340874
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS (ANGUS) with computational fluid dynamics.
    Krams R; Wentzel JJ; Oomen JA; Vinke R; Schuurbiers JC; de Feyter PJ; Serruys PW; Slager CJ
    Arterioscler Thromb Vasc Biol; 1997 Oct; 17(10):2061-5. PubMed ID: 9351372
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational simulation of intracoronary flow based on real coronary geometry.
    Boutsianis E; Dave H; Frauenfelder T; Poulikakos D; Wildermuth S; Turina M; Ventikos Y; Zund G
    Eur J Cardiothorac Surg; 2004 Aug; 26(2):248-56. PubMed ID: 15296879
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonquasi-steady character of pulsatile flow in human coronary arteries.
    Mark FF; Bargeron CB; Deters OJ; Friedman MH
    J Biomech Eng; 1985 Feb; 107(1):24-8. PubMed ID: 3157021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hemodynamics of a side-to-end proximal arterial anastomosis model.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Numerical simulation of pulsating flow in the aortic arch.
    Engelbrecht H; Steinmann CM; Pretorius L
    S Afr Med J; 1998 Feb; 88 Suppl 1():C40-3. PubMed ID: 9542494
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurements of velocity and wall shear stress inside a PTFE vascular graft model under steady flow conditions.
    Loth F; Jones SA; Giddens DP; Bassiouny HS; Glagov S; Zarins CK
    J Biomech Eng; 1997 May; 119(2):187-94. PubMed ID: 9168395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flow-induced wall shear stress in abdominal aortic aneurysms: Part II--pulsatile flow hemodynamics.
    Finol EA; Amon CH
    Comput Methods Biomech Biomed Engin; 2002 Aug; 5(4):319-28. PubMed ID: 12186711
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.