BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 10464696)

  • 21. The effect of trabecular structure on DXA-based predictions of bovine bone failure.
    Oden ZM; Selvitelli DM; Hayes WC; Myers ER
    Calcif Tissue Int; 1998 Jul; 63(1):67-73. PubMed ID: 9632849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales.
    Schwiedrzik JJ; Wolfram U; Zysset PK
    Biomech Model Mechanobiol; 2013 Nov; 12(6):1155-68. PubMed ID: 23412886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inelastic strain accumulation in cortical bone during rapid transient tensile loading.
    Fondrk MT; Bahniuk EH; Davy DT
    J Biomech Eng; 1999 Dec; 121(6):616-21. PubMed ID: 10633262
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mathematical analysis of trabecular 'trajectories' in apparent trajectorial structures: the unfortunate historical emphasis on the human proximal femur.
    Skedros JG; Baucom SL
    J Theor Biol; 2007 Jan; 244(1):15-45. PubMed ID: 16949618
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanical strength of trabecular bone at the knee.
    Hvid I
    Dan Med Bull; 1988 Aug; 35(4):345-65. PubMed ID: 3048922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone.
    Yeni YN; Hou FJ; Ciarelli T; Vashishth D; Fyhrie DP
    Ann Biomed Eng; 2003 Jun; 31(6):726-32. PubMed ID: 12797623
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tensile strength of bovine trabecular bone.
    Kaplan SJ; Hayes WC; Stone JL; Beaupré GS
    J Biomech; 1985; 18(9):723-7. PubMed ID: 4077868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shear strength behavior of human trabecular bone.
    Sanyal A; Gupta A; Bayraktar HH; Kwon RY; Keaveny TM
    J Biomech; 2012 Oct; 45(15):2513-9. PubMed ID: 22884967
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biaxial normal strength behavior in the axial-transverse plane for human trabecular bone--effects of bone volume fraction, microarchitecture, and anisotropy.
    Sanyal A; Keaveny TM
    J Biomech Eng; 2013 Dec; 135(12):121010. PubMed ID: 24121715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-axial mechanical properties of human trabecular bone.
    Rincón-Kohli L; Zysset PK
    Biomech Model Mechanobiol; 2009 Jun; 8(3):195-208. PubMed ID: 18695984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Apparent- and Tissue-Level Yield Behaviors of L4 Vertebral Trabecular Bone and Their Associations with Microarchitectures.
    Gong H; Wang L; Fan Y; Zhang M; Qin L
    Ann Biomed Eng; 2016 Apr; 44(4):1204-23. PubMed ID: 26104807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resistance to crack growth in human cortical bone is greater in shear than in tension.
    Norman TL; Nivargikar SV; Burr DB
    J Biomech; 1996 Aug; 29(8):1023-31. PubMed ID: 8817369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shear strength and toughness of trabecular bone are more sensitive to density than damage.
    Garrison JG; Gargac JA; Niebur GL
    J Biomech; 2011 Nov; 44(16):2747-54. PubMed ID: 21945570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses.
    Zioupos P; Currey JD; Mirza MS; Barton DC
    Philos Trans R Soc Lond B Biol Sci; 1995 Mar; 347(1322):383-96. PubMed ID: 7597104
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanical behavior of damaged trabecular bone.
    Keaveny TM; Wachtel EF; Guo XE; Hayes WC
    J Biomech; 1994 Nov; 27(11):1309-18. PubMed ID: 7798281
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Yield behavior of bovine cancellous bone.
    Turner CH
    J Biomech Eng; 1989 Aug; 111(3):256-60. PubMed ID: 2779192
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Uniaxial yield strains for bovine trabecular bone are isotropic and asymmetric.
    Chang WC; Christensen TM; Pinilla TP; Keaveny TM
    J Orthop Res; 1999 Jul; 17(4):582-5. PubMed ID: 10459766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trabecula-level mechanoadaptation: Numerical analysis of morphological changes.
    Smotrova E; Li S; Silberschmidt VV
    Comput Biol Med; 2024 Jan; 168():107720. PubMed ID: 38006828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Advancing the deer calcaneus model for bone adaptation studies: ex vivo strains obtained after transecting the tension members suggest an unrecognized important role for shear strains.
    Skedros JG; Su SC; Knight AN; Bloebaum RD; Bachus KN
    J Anat; 2019 Jan; 234(1):66-82. PubMed ID: 30411344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.