BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 10465412)

  • 1. Probing the altered specificity and catalytic properties of mutant subtilisin chemically modified at position S156C and S166C in the S1 pocket.
    DeSantis G; Jones JB
    Bioorg Med Chem; 1999 Jul; 7(7):1381-7. PubMed ID: 10465412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward tailoring the specificity of the S1 pocket of subtilisin B. lentus: chemical modification of mutant enzymes as a strategy for removing specificity limitations.
    DeSantis G; Shang X; Jones JB
    Biochemistry; 1999 Oct; 38(40):13391-7. PubMed ID: 10529215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benzophenone boronic acid photoaffinity labeling of subtilisin CMMs to probe altered specificity.
    DeSantis G; Paech C; Jones JB
    Bioorg Med Chem; 2000 Mar; 8(3):563-70. PubMed ID: 10732973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis combined with chemical modification as a strategy for altering the specificity of the S1 and S1' pockets of subtilisin Bacillus lentus.
    DeSantis G; Berglund P; Stabile MR; Gold M; Jones JB
    Biochemistry; 1998 Apr; 37(17):5968-73. PubMed ID: 9558332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The controlled introduction of multiple negative charge at single amino acid sites in subtilisin Bacillus lentus.
    Davis BG; Shang X; DeSantis G; Bott RR; Jones JB
    Bioorg Med Chem; 1999 Nov; 7(11):2293-301. PubMed ID: 10632039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemically modified "polar patch" mutants of subtilisin in peptide synthesis with remarkably broad substrate acceptance: designing combinatorial biocatalysts.
    Matsumoto K; Davis BG; Jones JB
    Chemistry; 2002 Sep; 8(18):4129-37. PubMed ID: 12298003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A combinatorial approach to chemical modification of subtilisin Bacillus lentus.
    Plettner E; Khumtaveeporn K; Shang X; Jones JB
    Bioorg Med Chem Lett; 1998 Sep; 8(17):2291-6. PubMed ID: 9873530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Covalent modification of subtilisin Bacillus lentus cysteine mutants with enantiomerically pure chiral auxiliaries causes remarkable changes in activity.
    Dickman M; Jones JB
    Bioorg Med Chem; 2000 Aug; 8(8):1957-68. PubMed ID: 11003141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the importance of hydrogen bonds in the active site of the subtilisin nattokinase by site-directed mutagenesis and molecular dynamics simulation.
    Zheng ZL; Ye MQ; Zuo ZY; Liu ZG; Tai KC; Zou GL
    Biochem J; 2006 May; 395(3):509-15. PubMed ID: 16411898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a novel specificity in subtilisin BPN'.
    Rheinnecker M; Baker G; Eder J; Fersht AR
    Biochemistry; 1993 Feb; 32(5):1199-203. PubMed ID: 8448130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altering the specificity of subtilisin Bacillus lentus through the introduction of positive charge at single amino acid sites.
    Davis BG; Khumtaveeporn K; Bott RR; Jones JB
    Bioorg Med Chem; 1999 Nov; 7(11):2303-11. PubMed ID: 10632040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the electrostatic perturbation of a catalytic site (Cys)-S-/(His)-Im+H ion-pair in one type of serine proteinase architecture by kinetic and computational studies on chemically mutated subtilisin variants.
    Plou FJ; Kowlessur D; Malthouse JP; Mellor GW; Hartshorn MJ; Pinitglang S; Patel H; Topham CM; Thomas EW; Verma C; Brocklehurst K
    J Mol Biol; 1996 Apr; 257(5):1088-111. PubMed ID: 8632470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly active and oxidation-resistant subtilisin-like enzyme produced by a combination of site-directed mutagenesis and chemical modification.
    Grøn H; Bech LM; Branner S; Breddam K
    Eur J Biochem; 1990 Dec; 194(3):897-901. PubMed ID: 2269308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the specificity of the S1 binding site of subtilisin Carlsberg with boronic acids.
    Seufer-Wasserthal P; Martichonok V; Keller TH; Chin B; Martin R; Jones JB
    Bioorg Med Chem; 1994 Jan; 2(1):35-48. PubMed ID: 7922119
    [No Abstract]   [Full Text] [Related]  

  • 16. Redirecting catalysis from proteolysis to perhydrolysis in subtilisin Carlsberg.
    Despotovic D; Vojcic L; Blanusa M; Maurer KH; Zacharias M; Bocola M; Martinez R; Schwaneberg U
    J Biotechnol; 2013 Sep; 167(3):279-86. PubMed ID: 23835157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing the mechanism and improving the rate of substrate-assisted catalysis in subtilisin BPN'.
    Carter P; Abrahmsén L; Wells JA
    Biochemistry; 1991 Jun; 30(25):6142-8. PubMed ID: 2059622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala.
    Mei HC; Liaw YC; Li YC; Wang DC; Takagi H; Tsai YC
    Protein Eng; 1998 Feb; 11(2):109-17. PubMed ID: 9605545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variants of subtilisin BPN' with altered specificity profiles.
    Rheinnecker M; Eder J; Pandey PS; Fersht AR
    Biochemistry; 1994 Jan; 33(1):221-5. PubMed ID: 8286344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering enzyme specificity by "substrate-assisted catalysis".
    Carter P; Wells JA
    Science; 1987 Jul; 237(4813):394-9. PubMed ID: 3299704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.