These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 10465716)

  • 1. Enhanced photolysis of nucleic acid monomers by pyrophosphate in the simulated primitive soup.
    Kongjiang W; Zhifang C; Xianming P
    Orig Life Evol Biosph; 1999 May; 29(3):261-72. PubMed ID: 10465716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Far UV photolysis of uracil and cytosine in phosphate solution.
    Li H; Wang W; Lin F; Wu J
    Biol Sci Space; 1998 Nov; 12(3):160-4. PubMed ID: 11542480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photochemistry of model oligo- and polynucleotides. II. Homopolymers of adenylic, guanylic and cytidylic acids and several heteropolymers.
    WIERZCHOWSKI KL; SHUGAR D
    Acta Biochim Pol; 1960; 7():377-99. PubMed ID: 13785138
    [No Abstract]   [Full Text] [Related]  

  • 4. Photochemistry of model oligo and poly-nucleotides. III. Cross-linking and staining properties of ultraviolet irradiated films of nucleic acids and oligonucleotides.
    BARANOWSKA J; SHUGAR D
    Acta Biochim Pol; 1960; 7():505-20. PubMed ID: 13686704
    [No Abstract]   [Full Text] [Related]  

  • 5. Damage to uracil- and adenine-containing bases, nucleosides, nucleotides and polynucleotides: quantum yields on irradiation at 193 and 254 nm.
    Gurzadyan GG; Görner H
    Photochem Photobiol; 1994 Oct; 60(4):323-32. PubMed ID: 7991661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The photochemistry of purine components of nucleic acids. I. The efficiency of photolysis of adenine and guanine derivatives in aqueous solution.
    Ivanchenko VA; Titschenko AI; Budowsky EI; Simukova NA; Wulfson NS
    Nucleic Acids Res; 1975 Aug; 2(8):1365-73. PubMed ID: 241061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transients of uracil and thymine derivatives and the quantum yields of electron ejection and intersystem crossing upon 20 ns photolysis at 248 nm.
    Görner H
    Photochem Photobiol; 1990 Nov; 52(5):935-48. PubMed ID: 2287635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prebiotic nucleic acids need space to grow.
    Whitaker D; Powner MW
    Nat Commun; 2018 Dec; 9(1):5172. PubMed ID: 30538228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Syntheses in the field of vitamin B 12. XI. On the synthesis of DL-cobinamide phosphoric acid amide, P1-DL-cobinamide-P2-guanosine-5'pyrophosphate and P1-DL-cobinamide-P2-adenosine-5'-pyrophosphate].
    BERNHAUER K; WAGNER F
    Biochem Z; 1962; 335():453-62. PubMed ID: 13868164
    [No Abstract]   [Full Text] [Related]  

  • 10. Identification of guanosine diphosphate L-galactose, guanosine diphosphate D-mannose, and adenosine 3',5'-pyrophosphate from red alga, Porphyra perforata, J.G. Agardh.
    SU JC; HASSID WZ
    J Biol Chem; 1960 Sep; 235():PC36-7. PubMed ID: 13835491
    [No Abstract]   [Full Text] [Related]  

  • 11. [Periodate oxidation in chemistry of nucleic acid. Dialdehyde derivatives of nucleosides, nucleotides, and oligonucleotides].
    Ermolinskiĭ BS; Mikhaĭlov SN
    Bioorg Khim; 2000 Jul; 26(7):483-504. PubMed ID: 11008639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions between singlet oxygen and the constituents of nucleic acids. Importance of reactions in photodynamic processes.
    Hallett FR; Hallett BP; Snipes W
    Biophys J; 1970 Apr; 10(4):305-15. PubMed ID: 5436880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: novel recognition mechanisms.
    Chen H; Parkinson JA; Morris RE; Sadler PJ
    J Am Chem Soc; 2003 Jan; 125(1):173-86. PubMed ID: 12515520
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypochromicity of oligo- and polynucleotides.
    MICHELSON AM
    Biochim Biophys Acta; 1962 Jun; 55():841-8. PubMed ID: 14473446
    [No Abstract]   [Full Text] [Related]  

  • 15. Bond cleavage in enzymic hydrolysis of nucleoside triphosphate to nucleoside monophosphate and inorganic pyrophosphate.
    COHN M
    Biochim Biophys Acta; 1960 Jan; 37():344-6. PubMed ID: 13811047
    [No Abstract]   [Full Text] [Related]  

  • 16. Interaction of nucleosides and related compounds with nucleic acids as indicated by the change of helix-coil transition temperature.
    TS'O PO; HELMKAMP GK; SANDER C
    Proc Natl Acad Sci U S A; 1962 Apr; 48(4):686-98. PubMed ID: 13922738
    [No Abstract]   [Full Text] [Related]  

  • 17. Secondary structures of nucleic acids in organic solvents. II. Optical properties of nucleotides and nucleic acids.
    TS'O PO; HELMKAMP GK; SANDER C
    Biochim Biophys Acta; 1962 May; 55():584-600. PubMed ID: 13922739
    [No Abstract]   [Full Text] [Related]  

  • 18. Energy transfer in dye-nucleic acid complexes.
    Delmelle M; Duchesne J
    Res Prog Org Biol Med Chem; 1972; 3 Pt 1():214-31. PubMed ID: 4377618
    [No Abstract]   [Full Text] [Related]  

  • 19. The reaction of nucleic acid components with m-chloroperoxybenzoic acid.
    Subbaraman LR; Subbaraman J; Behrman EJ
    Biochemistry; 1969 Jul; 8(7):3059-66. PubMed ID: 5808351
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of the Adsorption of Nucleic Acid Bases onto Ferrihydrite via Fourier Transform Infrared and Surface-Enhanced Raman Spectroscopy and X-ray Diffractometry.
    Canhisares-Filho JE; Carneiro CE; de Santana H; Urbano A; da Costa AC; Zaia CT; Zaia DA
    Astrobiology; 2015 Sep; 15(9):728-38. PubMed ID: 26393397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.