These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 10465751)

  • 41. Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle.
    Isaeva EV; Shkryl VM; Shirokova N
    J Physiol; 2005 Jun; 565(Pt 3):855-72. PubMed ID: 15845582
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Calcium sparks in intact skeletal muscle fibers of the frog.
    Hollingworth S; Peet J; Chandler WK; Baylor SM
    J Gen Physiol; 2001 Dec; 118(6):653-78. PubMed ID: 11723160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Functional and morphological features of skeletal muscle from mutant mice lacking both type 1 and type 3 ryanodine receptors.
    Ikemoto T; Komazaki S; Takeshima H; Nishi M; Noda T; Iino M; Endo M
    J Physiol; 1997 Jun; 501 ( Pt 2)(Pt 2):305-12. PubMed ID: 9192302
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calmodulin modulates initiation but not termination of spontaneous Ca2+ sparks in frog skeletal muscle.
    Rodney GG; Schneider MF
    Biophys J; 2003 Aug; 85(2):921-32. PubMed ID: 12885639
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Arg(615)Cys substitution in pig skeletal ryanodine receptors increases activation of single channels by a segment of the skeletal DHPR II-III loop.
    Gallant EM; Curtis S; Pace SM; Dulhunty AF
    Biophys J; 2001 Apr; 80(4):1769-82. PubMed ID: 11259290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles.
    Westcott EB; Jackson WF
    Am J Physiol Heart Circ Physiol; 2011 May; 300(5):H1616-30. PubMed ID: 21357503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Frog alpha- and beta-ryanodine receptors provide distinct intracellular Ca2+ signals in a myogenic cell line.
    Kashiyama T; Murayama T; Suzuki E; Allen PD; Ogawa Y
    PLoS One; 2010 Jul; 5(7):e11526. PubMed ID: 20634947
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of imperatoxin A on local sarcoplasmic reticulum Ca(2+) release in frog skeletal muscle.
    Shtifman A; Ward CW; Wang J; Valdivia HH; Schneider MF
    Biophys J; 2000 Aug; 79(2):814-27. PubMed ID: 10920014
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assessment of calcium sparks in intact skeletal muscle fibers.
    Park KH; Weisleder N; Zhou J; Gumpper K; Zhou X; Duann P; Ma J; Lin PH
    J Vis Exp; 2014 Feb; (84):e50898. PubMed ID: 24638093
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ryanodine receptor isoforms of non-Mammalian skeletal muscle.
    Ogawa Y; Murayama T; Kurebayashi N
    Front Biosci; 2002 May; 7():d1184-94. PubMed ID: 11991845
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulation of calcium sparks in cut skeletal muscle fibers of the frog.
    Chandler WK; Hollingworth S; Baylor SM
    J Gen Physiol; 2003 Apr; 121(4):311-24. PubMed ID: 12642597
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Caffeine-induced Ca(2+) sparks in mouse ventricular myocytes.
    Ritter M; Su Z; Spitzer KW; Ishida H; Barry WH
    Am J Physiol Heart Circ Physiol; 2000 Feb; 278(2):H666-9. PubMed ID: 10666100
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D dSTORM imaging reveals novel detail of ryanodine receptor localization in rat cardiac myocytes.
    Shen X; van den Brink J; Hou Y; Colli D; Le C; Kolstad TR; MacQuaide N; Carlson CR; Kekenes-Huskey PM; Edwards AG; Soeller C; Louch WE
    J Physiol; 2019 Jan; 597(2):399-418. PubMed ID: 30412283
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of calcium sparks in intact and permeabilized skeletal muscle fibers.
    Weisleder N; Zhou J; Ma J
    Methods Mol Biol; 2012; 798():395-410. PubMed ID: 22130850
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of simulated and measured calcium sparks in intact skeletal muscle fibers of the frog.
    Baylor SM; Hollingworth S; Chandler WK
    J Gen Physiol; 2002 Sep; 120(3):349-68. PubMed ID: 12198091
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Role of ryanodine receptor subtypes in initiation and formation of calcium sparks in arterial smooth muscle: comparison with striated muscle.
    Essin K; Gollasch M
    J Biomed Biotechnol; 2009; 2009():135249. PubMed ID: 20029633
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Long-Lasting Sparks: Multi-Metastability and Release Competition in the Calcium Release Unit Network.
    Song Z; Karma A; Weiss JN; Qu Z
    PLoS Comput Biol; 2016 Jan; 12(1):e1004671. PubMed ID: 26730593
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Role of FK506-binding protein in Ca
    Zhao YT; Guo YB; Fan XX; Yang HQ; Zhou P; Chen Z; Yuan Q; Ye H; Ji GJ; Wang SQ
    Sci Bull (Beijing); 2017 Oct; 62(19):1295-1303. PubMed ID: 36659291
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A calmodulin binding domain of RyR increases activation of spontaneous Ca2+ sparks in frog skeletal muscle.
    Rodney GG; Wilson GM; Schneider MF
    J Biol Chem; 2005 Mar; 280(12):11713-22. PubMed ID: 15640144
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Initiation and termination of calcium sparks in skeletal muscle.
    Schneider MF; Ward CW
    Front Biosci; 2002 May; 7():d1212-22. PubMed ID: 11991854
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.