These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 10467404)

  • 41. Cyclin box structure of the P-TEFb subunit cyclin T1 derived from a fusion complex with EIAV tat.
    Anand K; Schulte A; Fujinaga K; Scheffzek K; Geyer M
    J Mol Biol; 2007 Jul; 370(5):826-36. PubMed ID: 17540406
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription.
    Fu TJ; Peng J; Lee G; Price DH; Flores O
    J Biol Chem; 1999 Dec; 274(49):34527-30. PubMed ID: 10574912
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recruitment of the TATA-binding protein to the HIV-1 promoter is a limiting step for Tat transactivation.
    Majello B; Napolitano G; Lania L
    AIDS; 1998 Oct; 12(15):1957-64. PubMed ID: 9814863
    [TBL] [Abstract][Full Text] [Related]  

  • 44. CDK9 (PITALRE): a multifunctional cdc2-related kinase.
    de Falco G; Giordano A
    J Cell Physiol; 1998 Dec; 177(4):501-6. PubMed ID: 10092203
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Promoter activity of Tat at steps subsequent to TATA-binding protein recruitment.
    Xiao H; Lis JT; Jeang KT
    Mol Cell Biol; 1997 Dec; 17(12):6898-905. PubMed ID: 9372921
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The carboxyl-terminal domain of RNA polymerase II is phosphorylated by a complex containing cdk9 and infected-cell protein 22 of herpes simplex virus 1.
    Durand LO; Advani SJ; Poon AP; Roizman B
    J Virol; 2005 Jun; 79(11):6757-62. PubMed ID: 15890914
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CDK9: from basal transcription to cancer and AIDS.
    De Falco G; Giordano A
    Cancer Biol Ther; 2002; 1(4):342-7. PubMed ID: 12432243
    [TBL] [Abstract][Full Text] [Related]  

  • 48. P-TEFb containing cyclin K and Cdk9 can activate transcription via RNA.
    Lin X; Taube R; Fujinaga K; Peterlin BM
    J Biol Chem; 2002 May; 277(19):16873-8. PubMed ID: 11884399
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Cdk9 and cyclin T subunits of TAK/P-TEFb localize to splicing factor-rich nuclear speckle regions.
    Herrmann CH; Mancini MA
    J Cell Sci; 2001 Apr; 114(Pt 8):1491-503. PubMed ID: 11282025
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mechanisms controlling CDK9 activity.
    Marshall RM; Grana X
    Front Biosci; 2006 Sep; 11():2598-613. PubMed ID: 16720337
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CDK9 keeps RNA polymerase II on track.
    Egloff S
    Cell Mol Life Sci; 2021 Jul; 78(14):5543-5567. PubMed ID: 34146121
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tat-associated kinase, TAK, activity is regulated by distinct mechanisms in peripheral blood lymphocytes and promonocytic cell lines.
    Herrmann CH; Carroll RG; Wei P; Jones KA; Rice AP
    J Virol; 1998 Dec; 72(12):9881-8. PubMed ID: 9811724
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcriptional activating regions target attached substrates to a cyclin-dependent kinase.
    Ansari AZ; Ogirala A; Ptashne M
    Proc Natl Acad Sci U S A; 2005 Feb; 102(7):2346-9. PubMed ID: 15687503
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cyclin-dependent kinase 9 (Cdk9) of fission yeast is activated by the CDK-activating kinase Csk1, overlaps functionally with the TFIIH-associated kinase Mcs6, and associates with the mRNA cap methyltransferase Pcm1 in vivo.
    Pei Y; Du H; Singer J; Stamour C; Granitto S; Shuman S; Fisher RP
    Mol Cell Biol; 2006 Feb; 26(3):777-88. PubMed ID: 16428435
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recruitment of cdk9 to the immediate-early viral transcriptosomes during human cytomegalovirus infection requires efficient binding to cyclin T1, a threshold level of IE2 86, and active transcription.
    Kapasi AJ; Clark CL; Tran K; Spector DH
    J Virol; 2009 Jun; 83(11):5904-17. PubMed ID: 19297489
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Identification of a cyclin subunit required for the function of Drosophila P-TEFb.
    Peng J; Marshall NF; Price DH
    J Biol Chem; 1998 May; 273(22):13855-60. PubMed ID: 9593731
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Distinct regions of cyclinT1 are required for binding to CDK9 and for recruitment to the HIV-1 Tat/TAR complex.
    Fraldi A; Licciardo P; Majello B; Giordano A; Lania L
    J Cell Biochem Suppl; 2001; Suppl 36():247-53. PubMed ID: 11455589
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Control of RNA polymerase II activity by dedicated CTD kinases and phosphatases.
    Majello B; Napolitano G
    Front Biosci; 2001 Oct; 6():D1358-68. PubMed ID: 11578967
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SKIP interacts with c-Myc and Menin to promote HIV-1 Tat transactivation.
    Brès V; Yoshida T; Pickle L; Jones KA
    Mol Cell; 2009 Oct; 36(1):75-87. PubMed ID: 19818711
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genomic organization and characterization of promoter function of the human CDK9 gene.
    Liu H; Rice AP
    Gene; 2000 Jul; 252(1-2):51-9. PubMed ID: 10903437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.