These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10467742)

  • 1. Restoration of ocular dominance plasticity mediated by adenosine 3',5'-monophosphate in adult visual cortex.
    Imamura K; Kasamatsu T; Shirokawa T; Ohashi T
    Proc Biol Sci; 1999 Aug; 266(1428):1507-16. PubMed ID: 10467742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex.
    Imamura K; Kasamatsu T; Tanaka S
    Neuroscience; 2007 Jun; 147(2):508-21. PubMed ID: 17544224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reemergence of ocular dominance plasticity during recovery from the effects of propranolol infused in kitten visual cortex.
    Shirokawa T; Kasamatsu T
    Exp Brain Res; 1987; 68(3):466-76. PubMed ID: 2826211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adrenergic regulation of visuocortical plasticity: a role of the locus coeruleus system.
    Kasamatsu T
    Prog Brain Res; 1991; 88():599-616. PubMed ID: 1687623
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of N-methyl-D-aspartate receptors in ocular dominance plasticity in developing visual cortex: re-evaluation.
    Kasamatsu T; Imamura K; Mataga N; Hartveit E; Heggelund U; Heggelund P
    Neuroscience; 1998 Feb; 82(3):687-700. PubMed ID: 9483528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of catecholamine-mediated destabilization of messenger RNA encoding Thy-1 protein in T-lineage cells.
    Wajeman-Chao SA; Lancaster SA; Graf LH; Chambers DA
    J Immunol; 1998 Nov; 161(9):4825-33. PubMed ID: 9794415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex.
    Beaver CJ; Ji Q; Fischer QS; Daw NW
    Nat Neurosci; 2001 Feb; 4(2):159-63. PubMed ID: 11175876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancement of neuronal plasticity by activating the norepinephrine system in the brain: a remedy for amblyopia.
    Kasamatsu T
    Hum Neurobiol; 1982 Mar; 1(1):49-54. PubMed ID: 6309707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced ocular dominance plasticity and long-term potentiation in the developing visual cortex of protein kinase A RII alpha mutant mice.
    Rao Y; Fischer QS; Yang Y; McKnight GS; LaRue A; Daw NW
    Eur J Neurosci; 2004 Aug; 20(3):837-42. PubMed ID: 15255994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ocular dominance plasticity: Molecular mechanisms revisited.
    Kasamatsu T; Imamura K
    J Comp Neurol; 2020 Dec; 528(17):3039-3074. PubMed ID: 32737874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the central noradrenaline system in regulating neuronal plasticity in the developing neocortex.
    Kasamatsu T
    Prog Clin Biol Res; 1985; 163C():369-73. PubMed ID: 2986163
    [No Abstract]   [Full Text] [Related]  

  • 12. Ocular dominance plasticity restored by NA infusion to aplastic visual cortex of anesthetized and paralyzed kittens.
    Imamura K; Kasamatsu T
    Exp Brain Res; 1991; 87(2):309-18. PubMed ID: 1769385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental changes and ocular dominance plasticity in the visual cortex.
    Daw NW; Beaver CJ
    Keio J Med; 2001 Sep; 50(3):192-7. PubMed ID: 11594043
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of oligodendrocyte differentiation by activators of adenylate cyclase.
    Raible DW; McMorris FA
    J Neurosci Res; 1990 Sep; 27(1):43-6. PubMed ID: 2174977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of beta-adrenoreceptors in the shift of ocular dominance after monocular deprivation.
    Kasamatsu T; Shirokawa T
    Exp Brain Res; 1985; 59(3):507-14. PubMed ID: 2993012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of noradrenergic and cholinergic systems in regulation of ocular dominance plasticity.
    Imamura K; Kasamatsu T
    Neurosci Res; 1989 Aug; 6(6):519-36. PubMed ID: 2571958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. c-Fos activity mapping reveals differential effects of noradrenaline and serotonin depletion on the regulation of ocular dominance plasticity in rats.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2013 Apr; 235():1-9. PubMed ID: 23333670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of CREB, SRF, and MEF2 in Activity-Dependent Neuronal Plasticity in the Visual Cortex.
    Pulimood NS; Rodrigues WDS; Atkinson DA; Mooney SM; Medina AE
    J Neurosci; 2017 Jul; 37(28):6628-6637. PubMed ID: 28607167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of protein kinase A and protein kinase G in synaptic plasticity in the visual cortex.
    Liu S; Rao Y; Daw N
    Cereb Cortex; 2003 Aug; 13(8):864-9. PubMed ID: 12853373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity.
    Fischer QS; Beaver CJ; Yang Y; Rao Y; Jakobsdottir KB; Storm DR; McKnight GS; Daw NW
    J Neurosci; 2004 Oct; 24(41):9049-58. PubMed ID: 15483123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.