BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 10468610)

  • 1. Bacterial inactivation by using near- and supercritical carbon dioxide.
    Dillow AK; Dehghani F; Hrkach JS; Foster NR; Langer R
    Proc Natl Acad Sci U S A; 1999 Aug; 96(18):10344-8. PubMed ID: 10468610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation of bacteria and spores by pulse electric field and high pressure CO2 at low temperature.
    Spilimbergo S; Dehghani F; Bertucco A; Foster NR
    Biotechnol Bioeng; 2003 Apr; 82(1):118-25. PubMed ID: 12569631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sterilized ibuprofen-loaded poly(D,L-lactide-co-glycolide) microspheres for intra-articular administration: effect of gamma-irradiation and storage.
    Fernández-Carballido A; Herrero-Vanrell R; Molina-Martínez IT; Pastoriza P
    J Microencapsul; 2004 Sep; 21(6):653-65. PubMed ID: 15762322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tetracycline-HCl-loaded poly(DL-lactide-co-glycolide) microspheres prepared by a spray drying technique: influence of gamma-irradiation on radical formation and polymer degradation.
    Bittner B; Mäder K; Kroll C; Borchert HH; Kissel T
    J Control Release; 1999 May; 59(1):23-32. PubMed ID: 10210719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-thermal bacterial inactivation with dense CO(2).
    Spilimbergo S; Bertucco A
    Biotechnol Bioeng; 2003 Dec; 84(6):627-38. PubMed ID: 14595775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective terminal sterilization using supercritical carbon dioxide.
    White A; Burns D; Christensen TW
    J Biotechnol; 2006 Jun; 123(4):504-15. PubMed ID: 16497403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the sterilization of PLGA scaffolds for use in tissue engineering.
    Holy CE; Cheng C; Davies JE; Shoichet MS
    Biomaterials; 2001 Jan; 22(1):25-31. PubMed ID: 11085380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable PLGA microspheres loaded with ganciclovir for intraocular administration. Encapsulation technique, in vitro release profiles, and sterilization process.
    Herrero-Vanrell R; Ramirez L; Fernandez-Carballido A; Refojo MF
    Pharm Res; 2000 Oct; 17(10):1323-8. PubMed ID: 11145241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of bacterial spores and viruses in biological material using supercritical carbon dioxide with sterilant.
    Qiu QQ; Leamy P; Brittingham J; Pomerleau J; Kabaria N; Connor J
    J Biomed Mater Res B Appl Biomater; 2009 Nov; 91(2):572-578. PubMed ID: 19582844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Sterilization of Sensitive Biomaterials with Supercritical Carbon Dioxide at Low Temperature.
    Bernhardt A; Wehrl M; Paul B; Hochmuth T; Schumacher M; Schütz K; Gelinsky M
    PLoS One; 2015; 10(6):e0129205. PubMed ID: 26067982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human pathogens, nosocomial infections, heat-sensitive textile implants, and an innovative approach to deal with them.
    Cinquemani C
    J Ind Microbiol Biotechnol; 2011 Jan; 38(1):29-37. PubMed ID: 20824488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sterilization of bacterial spores by using supercritical carbon dioxide and hydrogen peroxide.
    Hemmer JD; Drews MJ; LaBerge M; Matthews MA
    J Biomed Mater Res B Appl Biomater; 2007 Feb; 80(2):511-8. PubMed ID: 16838346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new era for sterilization based on supercritical CO
    Ribeiro N; Soares GC; Santos-Rosales V; Concheiro A; Alvarez-Lorenzo C; García-González CA; Oliveira AL
    J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):399-428. PubMed ID: 31132221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sterilization of Bacillus pumilus spores using supercritical fluid carbon dioxide containing various modifier solutions.
    Shieh E; Paszczynski A; Wai CM; Lang Q; Crawford RL
    J Microbiol Methods; 2009 Mar; 76(3):247-52. PubMed ID: 19111835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable poly(DL-lactide-co-glycolide) microspheres.
    Eldridge JH; Staas JK; Tice TR; Gilley RM
    Res Immunol; 1992 Jun; 143(5):557-63; discussion 581. PubMed ID: 1439138
    [No Abstract]   [Full Text] [Related]  

  • 16. Poly(ethylene glycol) as stabilizer and emulsifying agent: a novel stabilization approach preventing aggregation and inactivation of proteins upon encapsulation in bioerodible polyester microspheres.
    Castellanos IJ; Crespo R; Griebenow K
    J Control Release; 2003 Feb; 88(1):135-45. PubMed ID: 12586511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gamma irradiation effects on poly(DL-lactictide-co-glycolide) microspheres.
    Montanari L; Costantini M; Signoretti EC; Valvo L; Santucci M; Bartolomei M; Fattibene P; Onori S; Faucitano A; Conti B; Genta I
    J Control Release; 1998 Dec; 56(1-3):219-29. PubMed ID: 9801445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(lactide-co-glycolide) microspheres containing bupivacaine: comparison between gamma and beta irradiation effects.
    Montanari L; Cilurzo F; Selmin F; Conti B; Genta I; Poletti G; Orsini F; Valvo L
    J Control Release; 2003 Jul; 90(3):281-90. PubMed ID: 12880695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition.
    Park TG
    Biomaterials; 1995 Oct; 16(15):1123-30. PubMed ID: 8562787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable microspheres for vitreoretinal drug delivery.
    Herrero-Vanrell R; Refojo MF
    Adv Drug Deliv Rev; 2001 Oct; 52(1):5-16. PubMed ID: 11672871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.