These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10469126)

  • 1. Refinement and evaluation of a model of Mg2+ buffering in human red cells.
    Raftos JE; Lew VL; Flatman PW
    Eur J Biochem; 1999 Aug; 263(3):635-45. PubMed ID: 10469126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model of the pH-dependence of the concentrations of complexes involving metabolites, haemoglobin and magnesium ions in the human erythrocyte.
    Mulquiney PJ; Kuchel PW
    Eur J Biochem; 1997 Apr; 245(1):71-83. PubMed ID: 9128726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 31P-NMR measurements of ATP, ADP, 2,3-diphosphoglycerate and Mg2+ in human erythrocytes.
    Petersen A; Kristensen SR; Jacobsen JP; Hørder M
    Biochim Biophys Acta; 1990 Aug; 1035(2):169-74. PubMed ID: 2393665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further studies on alterations in magnesium binding during cold storage of erythrocytes.
    Bock JL; Yusuf Y
    Biochim Biophys Acta; 1988 Jun; 941(2):225-31. PubMed ID: 3132976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic calcium buffers in intact human red cells.
    Tiffert T; Lew VL
    J Physiol; 1997 Apr; 500 ( Pt 1)(Pt 1):139-54. PubMed ID: 9097939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of deoxygenation on active and passive Ca2+ transport and cytoplasmic Ca2+ buffering in normal human red cells.
    Tiffert T; Etzion Z; Bookchin RM; Lew VL
    J Physiol; 1993 May; 464():529-44. PubMed ID: 8229816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells.
    Ortiz OE; Lew VL; Bookchin RM
    J Physiol; 1990 Aug; 427():211-26. PubMed ID: 2213597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Buffering and activity coefficient of intracellular free magnesium concentration in human erythrocytes.
    Günther T; Vormann J; McGuigan JA
    Biochem Mol Biol Int; 1995 Nov; 37(5):871-5. PubMed ID: 8624492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular free magnesium and phosphorylated metabolites in hexokinase- and pyruvate kinase-deficient red cells measured using 31P-NMR spectroscopy.
    Ouwerkerk R; van Echteld CJ; Staal GE; Rijksen G
    Biochim Biophys Acta; 1989 Mar; 1010(3):294-303. PubMed ID: 2920177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total and free Mg2+ contents in erythrocytes: a simple but still undisclosed cell model.
    Günther T
    Magnes Res; 2007 Sep; 20(3):161-7. PubMed ID: 17972458
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Free magnesium-ion concentration in erythrocytes by 31P NMR: the effect of metabolite-haemoglobin interactions.
    Mulquiney PJ; Kuchel PW
    NMR Biomed; 1997 May; 10(3):129-37. PubMed ID: 9408922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of buffer composition and deoxygenation on the concentration of ionized magnesium inside human red blood cells.
    Flatman PW
    J Physiol; 1980 Mar; 300():19-30. PubMed ID: 6770081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium buffering in intact human red blood cells measured using the ionophore A23187.
    Flatman PW; Lew VL
    J Physiol; 1980 Aug; 305():13-30. PubMed ID: 6777486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance and oxygen affinity study of cesium binding in human erythrocytes.
    Lin W; Mota de Freitas D; Zhang Q; Olsen KW
    Arch Biochem Biophys; 1999 Sep; 369(1):78-88. PubMed ID: 10462442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of intracellular calcium ions on adrenaline-stimulated adenosine 3':5'-cyclic monophosphate concentrations in pigeon erythrocytes, studied by using the ionophore A23187.
    Campbell AK; Siddle K
    Biochem J; 1976 Aug; 158(2):211-21. PubMed ID: 186033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Importance of binding of 2,3-diphosphoglycerate and ATP to hemoglobin for erythrocyte glycolysis: activation by 2,3-diphosphoglycerate of hexokinase at intracellular conditions].
    Geier T; Glende M; Reich JG
    Acta Biol Med Ger; 1978; 37(1):59-72. PubMed ID: 706929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative evaluation of respiration induced metabolic oscillations in erythrocytes.
    Hald B; Madsen MF; Danø S; Quistorff B; Sørensen PG
    Biophys Chem; 2009 Apr; 141(1):41-8. PubMed ID: 19162390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic phosphate binding to hemoglobin in intact human erythrocytes determined by 31P nuclear magnetic resonance spectroscopy.
    Marshall WE; Costello AJ; Henderson TO; Omachi A
    Biochim Biophys Acta; 1977 Feb; 490(2):290-300. PubMed ID: 13855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competition between Li+ and Mg2+ for ATP in human erythrocytes. A 31P NMR and optical spectroscopy study.
    Ramasamy R; de Freitas DM
    FEBS Lett; 1989 Feb; 244(1):223-6. PubMed ID: 2924906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of intracellular calcium on the sodium pump of human red cells.
    Brown AM; Lew VL
    J Physiol; 1983 Oct; 343():455-93. PubMed ID: 6315922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.