These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 10469130)
1. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Ainscow EK; Brand MD Eur J Biochem; 1999 Aug; 263(3):671-85. PubMed ID: 10469130 [TBL] [Abstract][Full Text] [Related]
2. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes. Ainscow EK; Brand MD Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367 [TBL] [Abstract][Full Text] [Related]
3. The responses of rat hepatocytes to glucagon and adrenaline. Application of quantified elasticity analysis. Ainscow EK; Brand MD Eur J Biochem; 1999 Nov; 265(3):1043-55. PubMed ID: 10518800 [TBL] [Abstract][Full Text] [Related]
4. Top-down control analysis of temperature effect on oxidative phosphorylation. Dufour S; Rousse N; Canioni P; Diolez P Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):743-51. PubMed ID: 8615765 [TBL] [Abstract][Full Text] [Related]
5. Control of respiration and oxidative phosphorylation in isolated rat liver cells. Brown GC; Lakin-Thomas PL; Brand MD Eur J Biochem; 1990 Sep; 192(2):355-62. PubMed ID: 2209591 [TBL] [Abstract][Full Text] [Related]
6. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes. Brand MD; Harper ME; Taylor HC Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):739-48. PubMed ID: 8489502 [TBL] [Abstract][Full Text] [Related]
7. Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes. Harper ME; Monemdjou S; Ramsey JJ; Weindruch R Am J Physiol; 1998 Aug; 275(2):E197-206. PubMed ID: 9688619 [TBL] [Abstract][Full Text] [Related]
8. Hyperthyroidism stimulates mitochondrial proton leak and ATP turnover in rat hepatocytes but does not change the overall kinetics of substrate oxidation reactions. Harper ME; Brand MD Can J Physiol Pharmacol; 1994 Aug; 72(8):899-908. PubMed ID: 7834578 [TBL] [Abstract][Full Text] [Related]
9. Kinetics and control of oxidative phosphorylation in rat liver mitochondria after dexamethasone treatment. Roussel D; Dumas JF; Simard G; Malthièry Y; Ritz P Biochem J; 2004 Sep; 382(Pt 2):491-9. PubMed ID: 15175015 [TBL] [Abstract][Full Text] [Related]
10. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511 [TBL] [Abstract][Full Text] [Related]
11. Reconstruction of steady state in cell-free systems. Interactions between glycolysis and mitochondrial metabolism: regulation of the redox and phosphorylation states. Jong YS; Davis EJ Arch Biochem Biophys; 1983 Apr; 222(1):179-91. PubMed ID: 6220674 [TBL] [Abstract][Full Text] [Related]
12. Control of oxidative phosphorylation, gluconeogenesis, ureagenesis and ATP turnover in isolated perfused rat liver analyzed by top-down metabolic control analysis. Soboll S; Oh MH; Brown GC Eur J Biochem; 1998 May; 254(1):194-201. PubMed ID: 9652414 [TBL] [Abstract][Full Text] [Related]
13. The quantitative contributions of mitochondrial proton leak and ATP turnover reactions to the changed respiration rates of hepatocytes from rats of different thyroid status. Harper ME; Brand MD J Biol Chem; 1993 Jul; 268(20):14850-60. PubMed ID: 8392060 [TBL] [Abstract][Full Text] [Related]
14. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences. Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312 [TBL] [Abstract][Full Text] [Related]
15. Theoretical studies on the control of the oxidative phosphorylation system. Korzeniewski B; Froncisz W Biochim Biophys Acta; 1992 Aug; 1102(1):67-75. PubMed ID: 1324730 [TBL] [Abstract][Full Text] [Related]
16. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells. Nakashima RA; Paggi MG; Pedersen PL Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833 [TBL] [Abstract][Full Text] [Related]
17. Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria. Wanders RJ; Groen AK; Van Roermund CW; Tager JM Eur J Biochem; 1984 Jul; 142(2):417-24. PubMed ID: 6086353 [TBL] [Abstract][Full Text] [Related]
18. Chronic ethanol consumption decreases mitochondrial and glycolytic production of ATP in liver. Young TA; Bailey SM; Van Horn CG; Cunningham CC Alcohol Alcohol; 2006; 41(3):254-60. PubMed ID: 16571619 [TBL] [Abstract][Full Text] [Related]
19. Effects of nitric oxide donor, isosorbide dinitrate, on energy metabolism of rat reticulocytes. Maletić SD; Dragicević LM; Zikić RV; Stajn AS; Kostić MM Physiol Res; 1999; 48(6):417-27. PubMed ID: 10783906 [TBL] [Abstract][Full Text] [Related]
20. Use of top-down elasticity analysis to identify sites of thyroid hormone-induced thermogenesis. Harper ME; Brand MD Proc Soc Exp Biol Med; 1995 Mar; 208(3):228-37. PubMed ID: 7878061 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]