These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 10469552)

  • 1. AC Electric-Field-Induced Fluid Flow in Microelectrodes.
    Ramos A; Morgan H; Green NG; Castellanos A
    J Colloid Interface Sci; 1999 Sep; 217(2):420-422. PubMed ID: 10469552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical Model of Electrode Polarization and AC Electroosmotic Fluid Flow in Planar Electrode Arrays.
    Scott M; Kaler KV; Paul R
    J Colloid Interface Sci; 2001 Jun; 238(2):449-451. PubMed ID: 11374941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of electrode impedance and electrode geometry in the design of microelectrode systems.
    Zhou H; Tilton RD; White LR
    J Colloid Interface Sci; 2006 May; 297(2):819-31. PubMed ID: 16332373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation.
    Green NG; Ramos A; González A; Morgan H; Castellanos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 2):026305. PubMed ID: 12241283
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manipulation and characterization of red blood cells with alternating current fields in microdevices.
    Minerick AR; Zhou R; Takhistov P; Chang HC
    Electrophoresis; 2003 Nov; 24(21):3703-17. PubMed ID: 14613196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements.
    Green NG; Ramos A; Gonzalez A; Morgan H; Castellanos A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4011-8. PubMed ID: 11088192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient electroosmotic flow induced by DC or AC electric fields in a curved microtube.
    Luo WJ
    J Colloid Interface Sci; 2004 Oct; 278(2):497-507. PubMed ID: 15450472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient electroosmotic flow induced by AC electric field in micro-channel with patchwise surface heterogeneities.
    Luo WJ
    J Colloid Interface Sci; 2006 Mar; 295(2):551-61. PubMed ID: 16242138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole-dipole interactions.
    Liu W; Shao J; Jia Y; Tao Y; Ding Y; Jiang H; Ren Y
    Soft Matter; 2015 Nov; 11(41):8105-12. PubMed ID: 26332897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes.
    Brown AB; Smith CG; Rennie AR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jan; 63(1 Pt 2):016305. PubMed ID: 11304351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrically driven flow near a colloidal particle close to an electrode with a Faradaic current.
    Ristenpart WD; Aksay IA; Saville DA
    Langmuir; 2007 Mar; 23(7):4071-80. PubMed ID: 17335253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional flow induced by synchronized longitudinal and zeta-potential controlling AC-electrical fields.
    van der Wouden EJ; Hermes DC; Gardeniers JG; van den Berg A
    Lab Chip; 2006 Oct; 6(10):1300-5. PubMed ID: 17102843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sedimentation Velocity and Potential in Concentrated Suspensions of Charged Spheres with Arbitrary Double-Layer Thickness.
    Keh HJ; Ding JM
    J Colloid Interface Sci; 2000 Jul; 227(2):540-552. PubMed ID: 10873344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroosmotic Flow in Microchannels.
    Yang RJ; Fu LM; Lin YC
    J Colloid Interface Sci; 2001 Jul; 239(1):98-105. PubMed ID: 11397053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic Flow of a General Electrolyte Solution through a Fibrous Medium.
    Lee E; Lee YS; Yen FY; Hsu JP
    J Colloid Interface Sci; 2000 Mar; 223(2):223-228. PubMed ID: 10700406
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge.
    Xuan X; Li D
    J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis.
    Gonzalez A; Ramos A; Green NG; Castellanos A; Morgan H
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Apr; 61(4 Pt B):4019-28. PubMed ID: 11088193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of the Electric Double Layer: Analysis in the Frequency and Time Domains.
    López-García JJ; Horno J; González-Caballero F; Grosse C; Delgado AV
    J Colloid Interface Sci; 2000 Aug; 228(1):95-104. PubMed ID: 10882498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.