These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10470384)

  • 21. Signal transduction by wild-type and leukemogenic Abl proteins.
    Raitano AB; Whang YE; Sawyers CL
    Biochim Biophys Acta; 1997 Dec; 1333(3):F201-16. PubMed ID: 9426204
    [No Abstract]   [Full Text] [Related]  

  • 22. Small molecule gated split-tyrosine phosphatases and orthogonal split-tyrosine kinases.
    Camacho-Soto K; Castillo-Montoya J; Tye B; Ogunleye LO; Ghosh I
    J Am Chem Soc; 2014 Dec; 136(49):17078-86. PubMed ID: 25409264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NO attenuates insulin signaling and motility in aortic smooth muscle cells via protein tyrosine phosphatase 1B-mediated mechanism.
    Sreejayan N; Lin Y; Hassid A
    Arterioscler Thromb Vasc Biol; 2002 Jul; 22(7):1086-92. PubMed ID: 12117721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein tyrosine phosphatases in cancer: friends and foes!
    Labbé DP; Hardy S; Tremblay ML
    Prog Mol Biol Transl Sci; 2012; 106():253-306. PubMed ID: 22340721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Use of Dominant-Negative/Substrate Trapping PTP Mutations to Search for PTP Interactors/Substrates.
    Radha V
    Methods Mol Biol; 2016; 1447():243-65. PubMed ID: 27514810
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protein tyrosine kinases and phosphatases in the nervous system.
    Wagner KR; Mei L; Huganir RL
    Curr Opin Neurobiol; 1991 Jun; 1(1):65-73. PubMed ID: 1822293
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the cross-regulation of protein tyrosine phosphatases and receptor tyrosine kinases in intracellular signaling.
    Haugh JM; Schneider IC; Lewis JM
    J Theor Biol; 2004 Sep; 230(1):119-32. PubMed ID: 15276005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Catalytic-dependent and -independent roles of SHP-2 tyrosine phosphatase in interleukin-3 signaling.
    Yu WM; Hawley TS; Hawley RG; Qu CK
    Oncogene; 2003 Sep; 22(38):5995-6004. PubMed ID: 12955078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of protein tyrosine kinases and protein tyrosine phosphatases in T cell antigen receptor signal transduction.
    Chan AC; Desai DM; Weiss A
    Annu Rev Immunol; 1994; 12():555-92. PubMed ID: 8011291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interleukin 6 inhibits proliferation and, in cooperation with an epidermal growth factor receptor autocrine loop, increases migration of T47D breast cancer cells.
    Badache A; Hynes NE
    Cancer Res; 2001 Jan; 61(1):383-91. PubMed ID: 11196191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide RNAi analysis of JAK/STAT signaling components in Drosophila.
    Baeg GH; Zhou R; Perrimon N
    Genes Dev; 2005 Aug; 19(16):1861-70. PubMed ID: 16055650
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-tyrosine-phosphatase SHPTP2 is a required positive effector for insulin downstream signaling.
    Yamauchi K; Milarski KL; Saltiel AR; Pessin JE
    Proc Natl Acad Sci U S A; 1995 Jan; 92(3):664-8. PubMed ID: 7531337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development.
    Trowbridge IS; Thomas ML
    Annu Rev Immunol; 1994; 12():85-116. PubMed ID: 8011300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SHP-1 expression in peripheral T cells from patients with Sezary syndrome and in the T cell line HUT-78: implications in JAK3-mediated signaling.
    León F; Cespón C; Franco A; Lombardía M; Roldán E; Escribano L; Harto A; González-Porqué P; Roy G
    Leukemia; 2002 Aug; 16(8):1470-7. PubMed ID: 12145687
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of megakaryocytopoiesis and platelet production by tyrosine kinases and tyrosine phosphatases.
    Avraham H; Price DJ
    Methods; 1999 Mar; 17(3):250-64. PubMed ID: 10080910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulation of interleukin-3-induced substrate phosphorylation and cell survival by SHP-2 (Src-homology protein tyrosine phosphatase 2).
    Wheadon H; Edmead C; Welham MJ
    Biochem J; 2003 Nov; 376(Pt 1):147-57. PubMed ID: 12935294
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transforming growth factor {beta} (TGF-{beta})-Smad target gene protein tyrosine phosphatase receptor type kappa is required for TGF-{beta} function.
    Wang SE; Wu FY; Shin I; Qu S; Arteaga CL
    Mol Cell Biol; 2005 Jun; 25(11):4703-15. PubMed ID: 15899872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein tyrosine phosphatases as adhesion receptors.
    Brady-Kalnay SM; Tonks NK
    Curr Opin Cell Biol; 1995 Oct; 7(5):650-7. PubMed ID: 8573339
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Selective neural cell adhesion molecule signaling by Src family tyrosine kinases and tyrosine phosphatases.
    Maness PF; Beggs HE; Klinz SG; Morse WR
    Perspect Dev Neurobiol; 1996; 4(2-3):169-81. PubMed ID: 9168199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dominant negative variants of the SHP-2 tyrosine phosphatase inhibit prolactin activation of Jak2 (janus kinase 2) and induction of Stat5 (signal transducer and activator of transcription 5)-dependent transcription.
    Berchtold S; Volarevic S; Moriggl R; Mercep M; Groner B
    Mol Endocrinol; 1998 Apr; 12(4):556-67. PubMed ID: 9544991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.