BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10471272)

  • 1. Lysine 183 is the general base in the 6-phosphogluconate dehydrogenase-catalyzed reaction.
    Zhang L; Chooback L; Cook PF
    Biochemistry; 1999 Aug; 38(35):11231-8. PubMed ID: 10471272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutamate 190 is a general acid catalyst in the 6-phosphogluconate-dehydrogenase-catalyzed reaction.
    Karsten WE; Chooback L; Cook PF
    Biochemistry; 1998 Nov; 37(45):15691-7. PubMed ID: 9843373
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and chemical mechanisms of the sheep liver 6-phosphogluconate dehydrogenase.
    Price NE; Cook PF
    Arch Biochem Biophys; 1996 Dec; 336(2):215-23. PubMed ID: 8954568
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of methionine-13 in the catalytic mechanism of 6-phosphogluconate dehydrogenase from sheep liver.
    Cervellati C; Dallocchio F; Bergamini CM; Cook PF
    Biochemistry; 2005 Feb; 44(7):2432-40. PubMed ID: 15709755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the S128, H186, and N187 triad in substrate binding and decarboxylation in the sheep liver 6-phosphogluconate dehydrogenase reaction.
    Li L; Zhang L; Cook PF
    Biochemistry; 2006 Oct; 45(42):12680-6. PubMed ID: 17042485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A catalytic triad is responsible for acid-base chemistry in the Ascaris suum NAD-malic enzyme.
    Karsten WE; Liu D; Rao GS; Harris BG; Cook PF
    Biochemistry; 2005 Mar; 44(9):3626-35. PubMed ID: 15736972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lysine residues 162 and 340 are involved in the catalysis and coenzyme binding of NADP(+)-dependent malic enzyme from pigeon.
    Kuo CC; Tsai LC; Chin TY; Chang GG; Chou WY
    Biochem Biophys Res Commun; 2000 Apr; 270(3):821-5. PubMed ID: 10772909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of lysine 240 in the mechanism of yeast pyruvate kinase catalysis.
    Bollenbach TJ; Mesecar AD; Nowak T
    Biochemistry; 1999 Jul; 38(28):9137-45. PubMed ID: 10413488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of site-directed mutagenesis to identify residues specific for each reaction catalyzed by chorismate mutase-prephenate dehydrogenase from Escherichia coli.
    Christendat D; Saridakis VC; Turnbull JL
    Biochemistry; 1998 Nov; 37(45):15703-12. PubMed ID: 9843375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proper orientation of the nicotinamide ring of NADP is important for the precatalytic conformational change in the 6-phosphogluconate dehydrogenase reaction.
    Cervellati C; Li L; Andi B; Guariento A; Dallocchio F; Cook PF
    Biochemistry; 2008 Feb; 47(7):1862-70. PubMed ID: 18205398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The roles of Tyr(91) and Lys(162) in general acid-base catalysis in the pigeon NADP+-dependent malic enzyme.
    Kuo CC; Lin KY; Hsu YJ; Lin SY; Lin YT; Chang GG; Chou WY
    Biochem J; 2008 May; 411(3):467-73. PubMed ID: 18248329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The oxidation state of active site thiols determines activity of saccharopine dehydrogenase at low pH.
    Bobyk KD; Kim SG; Kumar VP; Kim SK; West AH; Cook PF
    Arch Biochem Biophys; 2011 Sep; 513(2):71-80. PubMed ID: 21798231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosynthase activity of Bacillus licheniformis 1,3-1,4-beta-glucanase mutants: specificity, kinetics, and mechanism.
    Faijes M; Pérez X; Pérez O; Planas A
    Biochemistry; 2003 Nov; 42(45):13304-18. PubMed ID: 14609341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of active-site residues in the catalytic mechanism of trans-3-chloroacrylic acid dehalogenase: a kinetic, NMR, and mutational analysis.
    Azurmendi HF; Wang SC; Massiah MA; Poelarends GJ; Whitman CP; Mildvan AS
    Biochemistry; 2004 Apr; 43(14):4082-91. PubMed ID: 15065850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple isotope effects as a probe of proton and hydride transfer in the 6-phosphogluconate dehydrogenase reaction.
    Hwang CC; Cook PF
    Biochemistry; 1998 Nov; 37(45):15698-702. PubMed ID: 9843374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Farnesyl protein transferase: identification of K164 alpha and Y300 beta as catalytic residues by mutagenesis and kinetic studies.
    Wu Z; Demma M; Strickland CL; Radisky ES; Poulter CD; Le HV; Windsor WT
    Biochemistry; 1999 Aug; 38(35):11239-49. PubMed ID: 10471273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-directed mutagenesis of the putative distal helix of peroxygenase cytochrome P450.
    Matsunaga I; Ueda A; Sumimoto T; Ichihara K; Ayata M; Ogura H
    Arch Biochem Biophys; 2001 Oct; 394(1):45-53. PubMed ID: 11566026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P; Colman RF
    Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy cost for the proper ionization of active site residues in 6-phosphogluconate dehydrogenase from T. brucei.
    Hanau S; Proietti d'Empaire L; Montin K; Cervellati C; Capone I; Dallocchio F
    Biochim Biophys Acta; 2014 Apr; 1844(4):785-92. PubMed ID: 24568863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.