BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 10471293)

  • 1. Redesign of cytochrome c peroxidase into a manganese peroxidase: role of tryptophans in peroxidase activity.
    Gengenbach A; Syn S; Wang X; Lu Y
    Biochemistry; 1999 Aug; 38(35):11425-32. PubMed ID: 10471293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton NMR investigation of the heme active site structure of an engineered cytochrome c peroxidase that mimics manganese peroxidase.
    Wang X; Lu Y
    Biochemistry; 1999 Jul; 38(28):9146-57. PubMed ID: 10413489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different pathways of radical translocation in yeast cytochrome c peroxidase and its W191F mutant on reaction with H(2)O(2) suggest an antioxidant role.
    Tsaprailis G; English AM
    J Biol Inorg Chem; 2003 Feb; 8(3):248-55. PubMed ID: 12589560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of redox-active amino acids on compound I stability, substrate oxidation, and protein cross-linking in yeast cytochrome C peroxidase.
    Pfister TD; Gengenbach AJ; Syn S; Lu Y
    Biochemistry; 2001 Dec; 40(49):14942-51. PubMed ID: 11732914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrostatic control of the tryptophan radical in cytochrome c peroxidase.
    Barrows TP; Bhaskar B; Poulos TL
    Biochemistry; 2004 Jul; 43(27):8826-34. PubMed ID: 15236591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of axial ligands in the reactivity of Mn peroxidase from Phanerochaete chrysosporium.
    Whitwam RE; Koduri RS; Natan M; Tien M
    Biochemistry; 1999 Jul; 38(30):9608-16. PubMed ID: 10423238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of electrostatics and salt bridges in stabilizing the compound I radical in ascorbate peroxidase.
    Barrows TP; Poulos TL
    Biochemistry; 2005 Nov; 44(43):14062-8. PubMed ID: 16245922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resonance Raman spectroscopy of cytochrome c peroxidase variants that mimic manganese peroxidase.
    Feng M; Tachikawa H; Wang X; Pfister TD; Gengenbach AJ; Lu Y
    J Biol Inorg Chem; 2003 Sep; 8(7):699-706. PubMed ID: 14505074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peroxide-dependent formation of a covalent link between Trp51 and the heme in cytochrome c peroxidase.
    Pipirou Z; Guallar V; Basran J; Metcalfe CL; Murphy EJ; Bottrill AR; Mistry SC; Raven EL
    Biochemistry; 2009 Apr; 48(16):3593-9. PubMed ID: 19249872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Examining reactivity and specificity of cytochrome c peroxidase by using combinatorial mutagenesis.
    Wilming M; Iffland A; Tafelmeyer P; Arrivoli C; Saudan C; Johnsson K
    Chembiochem; 2002 Nov; 3(11):1097-104. PubMed ID: 12404635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Where is the radical in compound I of cytochrome c peroxidase? Clues from crystallography and mutagenesis.
    Edwards SL; Mauro JM; Fishel LA; Wang JM; Miller MA; Xuong NH; Kraut J
    Prog Clin Biol Res; 1988; 274():463-75. PubMed ID: 2841677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase.
    Taurog A; Dorris ML; Doerge DR
    Arch Biochem Biophys; 1996 Jun; 330(1):24-32. PubMed ID: 8651700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Mn(II)-Binding and Manganese Peroxidase Activity in a Designed Cytochrome c Peroxidase through Fine-Tuning Secondary-Sphere Interactions.
    Hosseinzadeh P; Mirts EN; Pfister TD; Gao YG; Mayne C; Robinson H; Tajkhorshid E; Lu Y
    Biochemistry; 2016 Mar; 55(10):1494-502. PubMed ID: 26885726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of configurational gating in intracomplex electron transfer from cytochrome c to the radical cation in cytochrome c peroxidase.
    Mei H; Wang K; Peffer N; Weatherly G; Cohen DS; Miller M; Pielak G; Durham B; Millett F
    Biochemistry; 1999 May; 38(21):6846-54. PubMed ID: 10346906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and crystallographic studies of a redesigned manganese-binding site in cytochrome c peroxidase.
    Pfister TD; Mirarefi AY; Gengenbach AJ; Zhao X; Danstrom C; Conatser N; Gao YG; Robinson H; Zukoski CF; Wang AH; Lu Y
    J Biol Inorg Chem; 2007 Jan; 12(1):126-37. PubMed ID: 17021923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction and characterization of a manganese-binding site in cytochrome c peroxidase: towards a novel manganese peroxidase.
    Yeung BK; Wang X; Sigman JA; Petillo PA; Lu Y
    Chem Biol; 1997 Mar; 4(3):215-21. PubMed ID: 9115415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Manganese oxidation site in Pleurotus eryngii versatile peroxidase: a site-directed mutagenesis, kinetic, and crystallographic study.
    Ruiz-Dueñas FJ; Morales M; Pérez-Boada M; Choinowski T; Martínez MJ; Piontek K; Martínez AT
    Biochemistry; 2007 Jan; 46(1):66-77. PubMed ID: 17198376
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of an engineered cation site on the structure, activity, and EPR properties of cytochrome c peroxidase.
    Bonagura CA; Sundaramoorthy M; Bhaskar B; Poulos TL
    Biochemistry; 1999 Apr; 38(17):5538-45. PubMed ID: 10220341
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two substrate interaction sites in lignin peroxidase revealed by site-directed mutagenesis.
    Doyle WA; Blodig W; Veitch NC; Piontek K; Smith AT
    Biochemistry; 1998 Oct; 37(43):15097-105. PubMed ID: 9790672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An engineered cation site in cytochrome c peroxidase alters the reactivity of the redox active tryptophan.
    Bonagura CA; Sundaramoorthy M; Pappa HS; Patterson WR; Poulos TL
    Biochemistry; 1996 May; 35(19):6107-15. PubMed ID: 8634253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.