BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 10471448)

  • 1. Cerebral blood flow during hemodilution and hypoxia in rats : role of ATP-sensitive potassium channels.
    Tomiyama Y; Brian JE; Todd MM
    Stroke; 1999 Sep; 30(9):1942-7; discussion 1947-8. PubMed ID: 10471448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodilution, cerebral O2 delivery, and cerebral blood flow: a study using hyperbaric oxygenation.
    Tomiyama Y; Jansen K; Brian JE; Todd MM
    Am J Physiol; 1999 Apr; 276(4):H1190-6. PubMed ID: 10199842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of K+ in regulating hypoxic cerebral blood flow in the rat: effect of glibenclamide and ouabain.
    Reid JM; Paterson DJ
    Am J Physiol; 1996 Jan; 270(1 Pt 2):H45-52. PubMed ID: 8769733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cerebral blood flow during hypoxemia and hemodilution in rabbits: different roles for nitric oxide?
    Todd MM; Farrell S; Wu B
    J Cereb Blood Flow Metab; 1997 Dec; 17(12):1319-25. PubMed ID: 9397031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets.
    Bari F; Louis TM; Busija DW
    Stroke; 1998 Jan; 29(1):222-7; discussion 227-8. PubMed ID: 9445354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coronary vascular K+ATP channels contribute to the maintenance of myocardial perfusion in dogs with pacing-induced heart failure.
    Yamamoto M; Egashira K; Arimura K; Tada H; Shimokawa H; Takeshita A
    Jpn Circ J; 2000 Sep; 64(9):701-7. PubMed ID: 10981856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATP-sensitive K+ channels mediate dilatation of cerebral arterioles during hypoxia.
    Taguchi H; Heistad DD; Kitazono T; Faraci FM
    Circ Res; 1994 May; 74(5):1005-8. PubMed ID: 8156623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blockade of K(ATP) channels with glibenclamide does not alter functional activation of cerebral blood flow in the unanesthetized rat.
    Esaki T; Itoh Y; Shimoji K; Cook M; Jehle J; Sokoloff L
    Brain Res; 2002 Sep; 948(1-2):56-63. PubMed ID: 12383955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blockade of cerebral blood flow response to insulin-induced hypoglycemia by caffeine and glibenclamide in conscious rats.
    Horinaka N; Kuang TY; Pak H; Wang R; Jehle J; Kennedy C; Sokoloff L
    J Cereb Blood Flow Metab; 1997 Dec; 17(12):1309-18. PubMed ID: 9397030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glibenclamide, a putative ATP-sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs.
    Narishige T; Egashira K; Akatsuka Y; Katsuda Y; Numaguchi K; Sakata M; Takeshita A
    Circ Res; 1993 Oct; 73(4):771-6. PubMed ID: 8370126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ATP-sensitive potassium channel inhibition on coronary metabolic vasodilation in humans.
    Farouque HM; Worthley SG; Meredith IT
    Arterioscler Thromb Vasc Biol; 2004 May; 24(5):905-10. PubMed ID: 15016638
    [TBL] [Abstract][Full Text] [Related]  

  • 12. K
    Rocha MP; Campos MO; Mattos JD; Mansur DE; Rocha HNM; Secher NH; Nóbrega ACL; Fernandes IA
    J Physiol; 2020 Aug; 598(16):3343-3356. PubMed ID: 32463117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of inhibition of ATP-sensitive potassium channels on metabolic vasodilation in the human forearm.
    Farouque HM; Meredith IT
    Clin Sci (Lond); 2003 Jan; 104(1):39-46. PubMed ID: 12519086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous adenosine does not activate ATP-sensitive potassium channels in the hypoxic guinea pig ventricle in vivo.
    Xu J; Wang L; Hurt CM; Pelleg A
    Circulation; 1994 Mar; 89(3):1209-16. PubMed ID: 8124809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of ATP-sensitive potassium channels in brain stem circulation during hypotension.
    Toyoda K; Fujii K; Ibayashi S; Kitazono T; Nagao T; Fujishima M
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1342-6. PubMed ID: 9321824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protection from ischaemic-reperfusion injury with adenosine pretreatment is reversed by inhibition of ATP sensitive potassium channels.
    Toombs CF; McGee DS; Johnston WE; Vinten-Johansen J
    Cardiovasc Res; 1993 Apr; 27(4):623-9. PubMed ID: 8324796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenine nucleotides via activation of ATP-sensitive K+ channels modulate hypoxic response in rat pulmonary artery.
    Shigemori K; Ishizaki T; Matsukawa S; Sakai A; Nakai T; Miyabo S
    Am J Physiol; 1996 May; 270(5 Pt 1):L803-9. PubMed ID: 8967515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine- and hypoxia-induced dilation of human coronary resistance arteries: evidence against the involvement of K(ATP) channels.
    Lynch FM; Austin C; Heagerty AM; Izzard AS
    Br J Pharmacol; 2006 Feb; 147(4):455-8. PubMed ID: 16341231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ATP-sensitive potassium channels in isolated rat aorta during physiologic, hypoxic, and low-glucose conditions.
    Hüsken BC; Pfaffendorf M; van Zwieten PA
    J Cardiovasc Pharmacol; 1997 Jan; 29(1):130-5. PubMed ID: 9007682
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebral blood flow and oxygen delivery during hypoxemia and hemodilution: role of arterial oxygen content.
    Todd MM; Wu B; Maktabi M; Hindman BJ; Warner DS
    Am J Physiol; 1994 Nov; 267(5 Pt 2):H2025-31. PubMed ID: 7977834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.